Loading…

Blind deconvolution via cumulant extrema

Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing magazine 1996-05, Vol.13 (3), p.24-42
Main Author: Cadzow, J.A.
Format: Magazinearticle
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operator is assumed. This discussion focuses on a class of deconvolution algorithms based on higher-order statistics, and more particularly, cumulants. These algorithms offer the potential of superior performance in both the noise free and noisy data cases relative to that achieved by other deconvolution techniques. This article provides a tutorial description as well as presenting new results on many of the fundamental higher-order concepts used in deconvolution, with the emphasis on maximizing the deconvolved signal's normalized cumulant.
ISSN:1053-5888
1558-0792
DOI:10.1109/79.489267