Loading…

Blind deconvolution via cumulant extrema

Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing magazine 1996-05, Vol.13 (3), p.24-42
Main Author: Cadzow, J.A.
Format: Magazinearticle
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3
cites cdi_FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3
container_end_page 42
container_issue 3
container_start_page 24
container_title IEEE signal processing magazine
container_volume 13
creator Cadzow, J.A.
description Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operator is assumed. This discussion focuses on a class of deconvolution algorithms based on higher-order statistics, and more particularly, cumulants. These algorithms offer the potential of superior performance in both the noise free and noisy data cases relative to that achieved by other deconvolution techniques. This article provides a tutorial description as well as presenting new results on many of the fundamental higher-order concepts used in deconvolution, with the emphasis on maximizing the deconvolved signal's normalized cumulant.
doi_str_mv 10.1109/79.489267
format magazinearticle
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28694948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>489267</ieee_id><sourcerecordid>28694948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3</originalsourceid><addsrcrecordid>eNqF0LtLxEAQBvBFFDxPC1urVKJFztnsa7bUwxcc2Gi9bLITiORxZpND__uL5LC1moH5MXx8jF1yWHEO9s7YlUSbaXPEFlwpTMHY7HjaQYlUIeIpO4vxE4BLFHbBbh7qqg1JoKJrd109DlXXJrvKJ8XYjLVvh4S-h54af85OSl9HujjMJft4enxfv6Sbt-fX9f0mLQTgkAYeQo5co_clEAedewm5zkiUyudGCSW1QSElck9U6kBGkFEyD4U2lHmxZNfz323ffY0UB9dUsaB6ykLdGF2G2ko7hf8XakBAbSZ4O8Oi72LsqXTbvmp8_-M4uN_SnLFuLm2yV7OtiOjPHY576dNmaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>26080867</pqid></control><display><type>magazinearticle</type><title>Blind deconvolution via cumulant extrema</title><source>IEEE Xplore (Online service)</source><creator>Cadzow, J.A.</creator><creatorcontrib>Cadzow, J.A.</creatorcontrib><description>Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operator is assumed. This discussion focuses on a class of deconvolution algorithms based on higher-order statistics, and more particularly, cumulants. These algorithms offer the potential of superior performance in both the noise free and noisy data cases relative to that achieved by other deconvolution techniques. This article provides a tutorial description as well as presenting new results on many of the fundamental higher-order concepts used in deconvolution, with the emphasis on maximizing the deconvolved signal's normalized cumulant.</description><identifier>ISSN: 1053-5888</identifier><identifier>EISSN: 1558-0792</identifier><identifier>DOI: 10.1109/79.489267</identifier><identifier>CODEN: ISPRE6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clouds ; Data mining ; Deconvolution ; Indexing ; Probability density function ; Random variables ; Signal design ; Signal processing ; Temperature</subject><ispartof>IEEE signal processing magazine, 1996-05, Vol.13 (3), p.24-42</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3</citedby><cites>FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/489267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,27925,54796</link.rule.ids></links><search><creatorcontrib>Cadzow, J.A.</creatorcontrib><title>Blind deconvolution via cumulant extrema</title><title>IEEE signal processing magazine</title><addtitle>MSP</addtitle><description>Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operator is assumed. This discussion focuses on a class of deconvolution algorithms based on higher-order statistics, and more particularly, cumulants. These algorithms offer the potential of superior performance in both the noise free and noisy data cases relative to that achieved by other deconvolution techniques. This article provides a tutorial description as well as presenting new results on many of the fundamental higher-order concepts used in deconvolution, with the emphasis on maximizing the deconvolved signal's normalized cumulant.</description><subject>Clouds</subject><subject>Data mining</subject><subject>Deconvolution</subject><subject>Indexing</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Signal design</subject><subject>Signal processing</subject><subject>Temperature</subject><issn>1053-5888</issn><issn>1558-0792</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>1996</creationdate><recordtype>magazinearticle</recordtype><recordid>eNqF0LtLxEAQBvBFFDxPC1urVKJFztnsa7bUwxcc2Gi9bLITiORxZpND__uL5LC1moH5MXx8jF1yWHEO9s7YlUSbaXPEFlwpTMHY7HjaQYlUIeIpO4vxE4BLFHbBbh7qqg1JoKJrd109DlXXJrvKJ8XYjLVvh4S-h54af85OSl9HujjMJft4enxfv6Sbt-fX9f0mLQTgkAYeQo5co_clEAedewm5zkiUyudGCSW1QSElck9U6kBGkFEyD4U2lHmxZNfz323ffY0UB9dUsaB6ykLdGF2G2ko7hf8XakBAbSZ4O8Oi72LsqXTbvmp8_-M4uN_SnLFuLm2yV7OtiOjPHY576dNmaA</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Cadzow, J.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960501</creationdate><title>Blind deconvolution via cumulant extrema</title><author>Cadzow, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Clouds</topic><topic>Data mining</topic><topic>Deconvolution</topic><topic>Indexing</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Signal design</topic><topic>Signal processing</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Cadzow, J.A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadzow, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind deconvolution via cumulant extrema</atitle><jtitle>IEEE signal processing magazine</jtitle><stitle>MSP</stitle><date>1996-05-01</date><risdate>1996</risdate><volume>13</volume><issue>3</issue><spage>24</spage><epage>42</epage><pages>24-42</pages><issn>1053-5888</issn><eissn>1558-0792</eissn><coden>ISPRE6</coden><abstract>Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operator is assumed. This discussion focuses on a class of deconvolution algorithms based on higher-order statistics, and more particularly, cumulants. These algorithms offer the potential of superior performance in both the noise free and noisy data cases relative to that achieved by other deconvolution techniques. This article provides a tutorial description as well as presenting new results on many of the fundamental higher-order concepts used in deconvolution, with the emphasis on maximizing the deconvolved signal's normalized cumulant.</abstract><pub>IEEE</pub><doi>10.1109/79.489267</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-5888
ispartof IEEE signal processing magazine, 1996-05, Vol.13 (3), p.24-42
issn 1053-5888
1558-0792
language eng
recordid cdi_proquest_miscellaneous_28694948
source IEEE Xplore (Online service)
subjects Clouds
Data mining
Deconvolution
Indexing
Probability density function
Random variables
Signal design
Signal processing
Temperature
title Blind deconvolution via cumulant extrema
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20deconvolution%20via%20cumulant%20extrema&rft.jtitle=IEEE%20signal%20processing%20magazine&rft.au=Cadzow,%20J.A.&rft.date=1996-05-01&rft.volume=13&rft.issue=3&rft.spage=24&rft.epage=42&rft.pages=24-42&rft.issn=1053-5888&rft.eissn=1558-0792&rft.coden=ISPRE6&rft_id=info:doi/10.1109/79.489267&rft_dat=%3Cproquest_cross%3E28694948%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26080867&rft_id=info:pmid/&rft_ieee_id=489267&rfr_iscdi=true