Loading…
Blind deconvolution via cumulant extrema
Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operat...
Saved in:
Published in: | IEEE signal processing magazine 1996-05, Vol.13 (3), p.24-42 |
---|---|
Main Author: | |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3 |
container_end_page | 42 |
container_issue | 3 |
container_start_page | 24 |
container_title | IEEE signal processing magazine |
container_volume | 13 |
creator | Cadzow, J.A. |
description | Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operator is assumed. This discussion focuses on a class of deconvolution algorithms based on higher-order statistics, and more particularly, cumulants. These algorithms offer the potential of superior performance in both the noise free and noisy data cases relative to that achieved by other deconvolution techniques. This article provides a tutorial description as well as presenting new results on many of the fundamental higher-order concepts used in deconvolution, with the emphasis on maximizing the deconvolved signal's normalized cumulant. |
doi_str_mv | 10.1109/79.489267 |
format | magazinearticle |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28694948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>489267</ieee_id><sourcerecordid>28694948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3</originalsourceid><addsrcrecordid>eNqF0LtLxEAQBvBFFDxPC1urVKJFztnsa7bUwxcc2Gi9bLITiORxZpND__uL5LC1moH5MXx8jF1yWHEO9s7YlUSbaXPEFlwpTMHY7HjaQYlUIeIpO4vxE4BLFHbBbh7qqg1JoKJrd109DlXXJrvKJ8XYjLVvh4S-h54af85OSl9HujjMJft4enxfv6Sbt-fX9f0mLQTgkAYeQo5co_clEAedewm5zkiUyudGCSW1QSElck9U6kBGkFEyD4U2lHmxZNfz323ffY0UB9dUsaB6ykLdGF2G2ko7hf8XakBAbSZ4O8Oi72LsqXTbvmp8_-M4uN_SnLFuLm2yV7OtiOjPHY576dNmaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>26080867</pqid></control><display><type>magazinearticle</type><title>Blind deconvolution via cumulant extrema</title><source>IEEE Xplore (Online service)</source><creator>Cadzow, J.A.</creator><creatorcontrib>Cadzow, J.A.</creatorcontrib><description>Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operator is assumed. This discussion focuses on a class of deconvolution algorithms based on higher-order statistics, and more particularly, cumulants. These algorithms offer the potential of superior performance in both the noise free and noisy data cases relative to that achieved by other deconvolution techniques. This article provides a tutorial description as well as presenting new results on many of the fundamental higher-order concepts used in deconvolution, with the emphasis on maximizing the deconvolved signal's normalized cumulant.</description><identifier>ISSN: 1053-5888</identifier><identifier>EISSN: 1558-0792</identifier><identifier>DOI: 10.1109/79.489267</identifier><identifier>CODEN: ISPRE6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clouds ; Data mining ; Deconvolution ; Indexing ; Probability density function ; Random variables ; Signal design ; Signal processing ; Temperature</subject><ispartof>IEEE signal processing magazine, 1996-05, Vol.13 (3), p.24-42</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3</citedby><cites>FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/489267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,27925,54796</link.rule.ids></links><search><creatorcontrib>Cadzow, J.A.</creatorcontrib><title>Blind deconvolution via cumulant extrema</title><title>IEEE signal processing magazine</title><addtitle>MSP</addtitle><description>Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operator is assumed. This discussion focuses on a class of deconvolution algorithms based on higher-order statistics, and more particularly, cumulants. These algorithms offer the potential of superior performance in both the noise free and noisy data cases relative to that achieved by other deconvolution techniques. This article provides a tutorial description as well as presenting new results on many of the fundamental higher-order concepts used in deconvolution, with the emphasis on maximizing the deconvolved signal's normalized cumulant.</description><subject>Clouds</subject><subject>Data mining</subject><subject>Deconvolution</subject><subject>Indexing</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Signal design</subject><subject>Signal processing</subject><subject>Temperature</subject><issn>1053-5888</issn><issn>1558-0792</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>1996</creationdate><recordtype>magazinearticle</recordtype><recordid>eNqF0LtLxEAQBvBFFDxPC1urVKJFztnsa7bUwxcc2Gi9bLITiORxZpND__uL5LC1moH5MXx8jF1yWHEO9s7YlUSbaXPEFlwpTMHY7HjaQYlUIeIpO4vxE4BLFHbBbh7qqg1JoKJrd109DlXXJrvKJ8XYjLVvh4S-h54af85OSl9HujjMJft4enxfv6Sbt-fX9f0mLQTgkAYeQo5co_clEAedewm5zkiUyudGCSW1QSElck9U6kBGkFEyD4U2lHmxZNfz323ffY0UB9dUsaB6ykLdGF2G2ko7hf8XakBAbSZ4O8Oi72LsqXTbvmp8_-M4uN_SnLFuLm2yV7OtiOjPHY576dNmaA</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>Cadzow, J.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960501</creationdate><title>Blind deconvolution via cumulant extrema</title><author>Cadzow, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Clouds</topic><topic>Data mining</topic><topic>Deconvolution</topic><topic>Indexing</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Signal design</topic><topic>Signal processing</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Cadzow, J.A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadzow, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind deconvolution via cumulant extrema</atitle><jtitle>IEEE signal processing magazine</jtitle><stitle>MSP</stitle><date>1996-05-01</date><risdate>1996</risdate><volume>13</volume><issue>3</issue><spage>24</spage><epage>42</epage><pages>24-42</pages><issn>1053-5888</issn><eissn>1558-0792</eissn><coden>ISPRE6</coden><abstract>Classical deconvolution is concerned with the task of recovering an excitation signal, given the response of a known time-invariant linear operator to that excitation. Deconvolution is discussed along with its more challenging counterpart, blind deconvolution, where no knowledge of the linear operator is assumed. This discussion focuses on a class of deconvolution algorithms based on higher-order statistics, and more particularly, cumulants. These algorithms offer the potential of superior performance in both the noise free and noisy data cases relative to that achieved by other deconvolution techniques. This article provides a tutorial description as well as presenting new results on many of the fundamental higher-order concepts used in deconvolution, with the emphasis on maximizing the deconvolved signal's normalized cumulant.</abstract><pub>IEEE</pub><doi>10.1109/79.489267</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-5888 |
ispartof | IEEE signal processing magazine, 1996-05, Vol.13 (3), p.24-42 |
issn | 1053-5888 1558-0792 |
language | eng |
recordid | cdi_proquest_miscellaneous_28694948 |
source | IEEE Xplore (Online service) |
subjects | Clouds Data mining Deconvolution Indexing Probability density function Random variables Signal design Signal processing Temperature |
title | Blind deconvolution via cumulant extrema |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20deconvolution%20via%20cumulant%20extrema&rft.jtitle=IEEE%20signal%20processing%20magazine&rft.au=Cadzow,%20J.A.&rft.date=1996-05-01&rft.volume=13&rft.issue=3&rft.spage=24&rft.epage=42&rft.pages=24-42&rft.issn=1053-5888&rft.eissn=1558-0792&rft.coden=ISPRE6&rft_id=info:doi/10.1109/79.489267&rft_dat=%3Cproquest_cross%3E28694948%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-d1ddb8168aaf0e106ba40b62e3f5ab7535467834481aeef6de73e754bdc67e2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26080867&rft_id=info:pmid/&rft_ieee_id=489267&rfr_iscdi=true |