Loading…

Three-dimensional electrical impedance tomography applied to a metal-walled filtration test platform

The first true three-dimensional image reconstructions from a metal-walled vessel using electrical impedance tomography (EIT) are presented. Two image reconstruction techniques have been applied via relatively sophisticated FEM modelling of a bespoke laboratory test vessel from which data have been...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2004-11, Vol.15 (11), p.2263-2274
Main Authors: Davidson, J L, Ruffino, L S, Stephenson, D R, Mann, R, Grieve, B D, York, T A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The first true three-dimensional image reconstructions from a metal-walled vessel using electrical impedance tomography (EIT) are presented. Two image reconstruction techniques have been applied via relatively sophisticated FEM modelling of a bespoke laboratory test vessel from which data have been obtained using an EIT instrument designed to intrinsically safe requirements. A generalized Tikhonov regularization method is compared with the linear back-projection (LBP) technique. Subsequent image reconstructions strongly suggest that the LBP method when applied to a metal-walled vessel is highly sensitive to the level of detail within the FEM model. By comparison, the regularized technique is far less sensitive to the complexity of the modelled geometry. Additionally, unlike the LBP method, the regularization technique has been successful in accurately reconstructing multiple inhomogeneities within an aqueous system. A further experiment has shown similar sensitivity in a wetted powder-based system. It is concluded that EIT via a regularized difference imaging approach has significant potential for detecting 3D malformations and non-uniformities in industrial pressure filtration systems.
ISSN:0957-0233
1361-6501
DOI:10.1088/0957-0233/15/11/012