White hyacinth bean polysaccharide ameliorates diabetes via microbiota-gut-brain axis in type 2 diabetes mellitus rats

Gut played a potent role in onset and progression of metabolic disorders, presenting an exciting direction for diabetes prevention. Here, the anti-diabetic effects of White hyacinth bean polysaccharides (WHBP) were observed, including the reduction of blood glucose levels and improvement of intestin...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2023-12, Vol.253, p.127307-127307, Article 127307
Main Authors: Chen, Su-Mei, Zeng, Fan-Sen, Fu, Wang-Wei, You, Hui-Ting, Mu, Xiao-Yu, Chen, Guang-Feng, Lv, Hao, Li, Wen-Juan, Xie, Ming-Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gut played a potent role in onset and progression of metabolic disorders, presenting an exciting direction for diabetes prevention. Here, the anti-diabetic effects of White hyacinth bean polysaccharides (WHBP) were observed, including the reduction of blood glucose levels and improvement of intestinal impairment in type 2 diabetes mellitus (T2DM) rats. Further data concerning intestinal protection suggested that WHBP restored intestinal barrier, as evidenced by inhibition of intestinal pathological damage, up-regulation of Zonula occluden-1 expression and manipulation of the redox system in T2DM rats. Moreover, WHBP-mediated anti-diabetic effects were in parallel with the adjustment of changes in gut microbiota composition of T2DM rats. Meanwhile, hypersecretion of corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone levels, which were critical coordinators of the hypothalamic-pituitary-adrenal (HPA) axis, were suppressed in T2DM rats exposed to WHBP, indicating that WHBP-mediated health benefits were referring to regulate brain feedback in reduction of HPA axis. Concomitantly, further suggested and expanded on gut-brain communication by data of microbial metabolites short-chain fatty acids, mediators of gut-brain interactions, were remarkably raised in cecum contents of T2DM rats subjected to WHBP. Collectively, WHBP performed anti-diabetic effects were associated with control of microbiota-gut-brain axis implicated in intestinal barrier, HPA axis, gut microbiota and their metabolites. [Display omitted]
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.127307