Loading…

Controllable Synthesis of Defective UiO-66 for Efficient Degradation and Detection of Ozone

Metal–organic framework (MOF) structures have gained significant attention for their exceptional catalytic performance in ozone degradation, even under high humidity conditions, which is attributed to the presence of unsaturated metal sites (MOF defects). However, the correlation between MOF defects...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-10, Vol.15 (42), p.49920-49930
Main Authors: Pu, Sirui, Song, Hongjie, Zhang, Lichun, Su, Yingying, Liu, Rui, Lv, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal–organic framework (MOF) structures have gained significant attention for their exceptional catalytic performance in ozone degradation, even under high humidity conditions, which is attributed to the presence of unsaturated metal sites (MOF defects). However, the correlation between MOF defects and catalytic ozone remains ambiguous, and a general approach for the controllable synthesis of high-performance MOF structures is currently lacking. Herein, different defective UiO-66 materials with cluster or ligand defects were obtained by precisely controlling small molecular acid modulators. Their catalytic performance can be analyzed in real time through the specific cataluminescence (CTL) signal of ozone at the interface. The presence of ligand defects was found to be crucial for both catalytic degradation and luminescence of ozone, and the CTL signal exhibited a positive correlation with the endogenous hydroxyl group content in the material (R 2 = 0.982), while external humidity further supplemented internal water molecules within the material. Furthermore, theoretical calculations were conducted to compare the adsorption behaviors of ozone on the defective UiO-66 under dry/wet conditions, leading to the proposal of two potential reaction pathways. Subsequently, UiO-66-DA with superior catalytic performance was employed to develop a highly efficient CTL sensor capable of accurately detecting ozone (LOD = 23.3 ppb). This study held significant value in elucidating the reaction site of ozone on MOFs and achieving optimal catalytic effects through the careful selection of modulators and humidity levels.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c13054