Loading…

High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream

The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum st...

Full description

Saved in:
Bibliographic Details
Published in:Fish physiology and biochemistry 2023-12, Vol.49 (6), p.1079-1095
Main Authors: Abasubong, Kenneth Prudence, Jiang, Guang-Zhen, Guo, Hui-xing, Wang, Xi, Li, Xiang-Fei, Yan-zou, Dong, Liu, Wen-bin, Desouky, Hesham Eed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c326t-1c66f3abfef08a3f2e2acf02cc9e858d1ece27a8bddbfc0e91a9cdb6479b87fe3
container_end_page 1095
container_issue 6
container_start_page 1079
container_title Fish physiology and biochemistry
container_volume 49
creator Abasubong, Kenneth Prudence
Jiang, Guang-Zhen
Guo, Hui-xing
Wang, Xi
Li, Xiang-Fei
Yan-zou, Dong
Liu, Wen-bin
Desouky, Hesham Eed
description The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006 . The transcriptional levels of glucose-regulated protein 78 ( grp78 ), inositol requiring enzyme 1 ( ire1 ), spliced X box-binding protein 1 ( xbp1 ), DnaJ heat shock protein family (Hsp40) member B9 ( dnajb9 ), tumor necrosis factor alpha ( tnf-α ), nuclear factor-kappa B ( nf-κb ) , monocyte chemoattractant protein-1 ( mcp-1 ), and interleukin-6 ( il-6 ) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax , caspases-3 , and caspases-9, ZO-1 , Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.
doi_str_mv 10.1007/s10695-023-01240-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2877389764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907824489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-1c66f3abfef08a3f2e2acf02cc9e858d1ece27a8bddbfc0e91a9cdb6479b87fe3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCfgnN3aWqAJaqRIbWEcTZ9y6SuzgcSrxKLwthlxAYtHVLM43ZzTnMPZSirdSCPOOpOj6YyOUboRUrWjUI3aQR6Obo-zsY3YQvRKNNK06Y8-I7oQQvenkU3amjdVSG3FgPy7DzW3jofApYOEwF8zEQyxIJUSY-RJcTmNIBTjEqSrT5pA4ximtM1CVecYS3DZvC6eSkYjfB-DlFjm4Eu6hhBR58hzWtJZEgU5GfoZl2dUQ-ThvsXCKaSt8zAjLc_bEw0z44jTP2dePH75cXDbXnz9dXby_bpxWXWmk6zqvYfTohQXtFSpwXijnerRHO0l0qAzYcZpG7wT2Eno3jV1r-tEaj_qcvdl915y-bfXtYQnkcJ4hYtpoUNYYbWtwbUVf_4fepS3XlCrVC2NV29q-UmqnanBEGf2w5rBA_j5IMfwqbtiLG2pxw-_iBlWXXp2st3HB6e_Kn6YqoHeAqhRvMP-7_YDtT8xdqI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907824489</pqid></control><display><type>article</type><title>High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream</title><source>Springer Link</source><creator>Abasubong, Kenneth Prudence ; Jiang, Guang-Zhen ; Guo, Hui-xing ; Wang, Xi ; Li, Xiang-Fei ; Yan-zou, Dong ; Liu, Wen-bin ; Desouky, Hesham Eed</creator><creatorcontrib>Abasubong, Kenneth Prudence ; Jiang, Guang-Zhen ; Guo, Hui-xing ; Wang, Xi ; Li, Xiang-Fei ; Yan-zou, Dong ; Liu, Wen-bin ; Desouky, Hesham Eed</creatorcontrib><description>The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006 . The transcriptional levels of glucose-regulated protein 78 ( grp78 ), inositol requiring enzyme 1 ( ire1 ), spliced X box-binding protein 1 ( xbp1 ), DnaJ heat shock protein family (Hsp40) member B9 ( dnajb9 ), tumor necrosis factor alpha ( tnf-α ), nuclear factor-kappa B ( nf-κb ) , monocyte chemoattractant protein-1 ( mcp-1 ), and interleukin-6 ( il-6 ) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax , caspases-3 , and caspases-9, ZO-1 , Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.</description><identifier>ISSN: 0920-1742</identifier><identifier>EISSN: 1573-5168</identifier><identifier>DOI: 10.1007/s10695-023-01240-2</identifier><identifier>PMID: 37831370</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Absorption ; Abundance ; Animal Anatomy ; Animal Biochemistry ; Animal Physiology ; Animals ; Antioxidants - metabolism ; Apoptosis ; Biomedical and Life Sciences ; Bream ; Caspases - metabolism ; Caspases - pharmacology ; Cholesterol ; Cyprinidae - metabolism ; Cypriniformes - metabolism ; Diet ; Diet, High-Fat ; Dietary intake ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Esterification ; Fatty acids ; Fish ; Freshwater &amp; Marine Ecology ; Gastrointestinal Microbiome ; Glutathione ; Glutathione peroxidase ; Heat shock ; Heat shock proteins ; High fat diet ; Histology ; Hsp40 protein ; Inflammation ; Inositol ; Inositols ; Interleukin 6 ; Intestinal microflora ; Intestine ; Intestines ; Life Sciences ; Lipids ; Microbiota ; Microorganisms ; Monocyte chemoattractant protein ; Monocyte chemoattractant protein 1 ; Monocytes ; Morphology ; Necrosis ; NF-κB protein ; Occludin - metabolism ; Occludin - pharmacology ; Peroxidase ; Proteins ; Superoxide dismutase ; Triglycerides ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; Zonula occludens-1 protein ; Zoology</subject><ispartof>Fish physiology and biochemistry, 2023-12, Vol.49 (6), p.1079-1095</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-1c66f3abfef08a3f2e2acf02cc9e858d1ece27a8bddbfc0e91a9cdb6479b87fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37831370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abasubong, Kenneth Prudence</creatorcontrib><creatorcontrib>Jiang, Guang-Zhen</creatorcontrib><creatorcontrib>Guo, Hui-xing</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Li, Xiang-Fei</creatorcontrib><creatorcontrib>Yan-zou, Dong</creatorcontrib><creatorcontrib>Liu, Wen-bin</creatorcontrib><creatorcontrib>Desouky, Hesham Eed</creatorcontrib><title>High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream</title><title>Fish physiology and biochemistry</title><addtitle>Fish Physiol Biochem</addtitle><addtitle>Fish Physiol Biochem</addtitle><description>The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006 . The transcriptional levels of glucose-regulated protein 78 ( grp78 ), inositol requiring enzyme 1 ( ire1 ), spliced X box-binding protein 1 ( xbp1 ), DnaJ heat shock protein family (Hsp40) member B9 ( dnajb9 ), tumor necrosis factor alpha ( tnf-α ), nuclear factor-kappa B ( nf-κb ) , monocyte chemoattractant protein-1 ( mcp-1 ), and interleukin-6 ( il-6 ) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax , caspases-3 , and caspases-9, ZO-1 , Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.</description><subject>Absorption</subject><subject>Abundance</subject><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Antioxidants - metabolism</subject><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Bream</subject><subject>Caspases - metabolism</subject><subject>Caspases - pharmacology</subject><subject>Cholesterol</subject><subject>Cyprinidae - metabolism</subject><subject>Cypriniformes - metabolism</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>Dietary intake</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Esterification</subject><subject>Fatty acids</subject><subject>Fish</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Gastrointestinal Microbiome</subject><subject>Glutathione</subject><subject>Glutathione peroxidase</subject><subject>Heat shock</subject><subject>Heat shock proteins</subject><subject>High fat diet</subject><subject>Histology</subject><subject>Hsp40 protein</subject><subject>Inflammation</subject><subject>Inositol</subject><subject>Inositols</subject><subject>Interleukin 6</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Intestines</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Monocyte chemoattractant protein</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Monocytes</subject><subject>Morphology</subject><subject>Necrosis</subject><subject>NF-κB protein</subject><subject>Occludin - metabolism</subject><subject>Occludin - pharmacology</subject><subject>Peroxidase</subject><subject>Proteins</subject><subject>Superoxide dismutase</subject><subject>Triglycerides</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>Zonula occludens-1 protein</subject><subject>Zoology</subject><issn>0920-1742</issn><issn>1573-5168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhS0EopfCC7BAltiwCfgnN3aWqAJaqRIbWEcTZ9y6SuzgcSrxKLwthlxAYtHVLM43ZzTnMPZSirdSCPOOpOj6YyOUboRUrWjUI3aQR6Obo-zsY3YQvRKNNK06Y8-I7oQQvenkU3amjdVSG3FgPy7DzW3jofApYOEwF8zEQyxIJUSY-RJcTmNIBTjEqSrT5pA4ximtM1CVecYS3DZvC6eSkYjfB-DlFjm4Eu6hhBR58hzWtJZEgU5GfoZl2dUQ-ThvsXCKaSt8zAjLc_bEw0z44jTP2dePH75cXDbXnz9dXby_bpxWXWmk6zqvYfTohQXtFSpwXijnerRHO0l0qAzYcZpG7wT2Eno3jV1r-tEaj_qcvdl915y-bfXtYQnkcJ4hYtpoUNYYbWtwbUVf_4fepS3XlCrVC2NV29q-UmqnanBEGf2w5rBA_j5IMfwqbtiLG2pxw-_iBlWXXp2st3HB6e_Kn6YqoHeAqhRvMP-7_YDtT8xdqI4</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Abasubong, Kenneth Prudence</creator><creator>Jiang, Guang-Zhen</creator><creator>Guo, Hui-xing</creator><creator>Wang, Xi</creator><creator>Li, Xiang-Fei</creator><creator>Yan-zou, Dong</creator><creator>Liu, Wen-bin</creator><creator>Desouky, Hesham Eed</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20231201</creationdate><title>High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream</title><author>Abasubong, Kenneth Prudence ; Jiang, Guang-Zhen ; Guo, Hui-xing ; Wang, Xi ; Li, Xiang-Fei ; Yan-zou, Dong ; Liu, Wen-bin ; Desouky, Hesham Eed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-1c66f3abfef08a3f2e2acf02cc9e858d1ece27a8bddbfc0e91a9cdb6479b87fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Abundance</topic><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Antioxidants - metabolism</topic><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Bream</topic><topic>Caspases - metabolism</topic><topic>Caspases - pharmacology</topic><topic>Cholesterol</topic><topic>Cyprinidae - metabolism</topic><topic>Cypriniformes - metabolism</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>Dietary intake</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Esterification</topic><topic>Fatty acids</topic><topic>Fish</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Gastrointestinal Microbiome</topic><topic>Glutathione</topic><topic>Glutathione peroxidase</topic><topic>Heat shock</topic><topic>Heat shock proteins</topic><topic>High fat diet</topic><topic>Histology</topic><topic>Hsp40 protein</topic><topic>Inflammation</topic><topic>Inositol</topic><topic>Inositols</topic><topic>Interleukin 6</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Intestines</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Monocyte chemoattractant protein</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Monocytes</topic><topic>Morphology</topic><topic>Necrosis</topic><topic>NF-κB protein</topic><topic>Occludin - metabolism</topic><topic>Occludin - pharmacology</topic><topic>Peroxidase</topic><topic>Proteins</topic><topic>Superoxide dismutase</topic><topic>Triglycerides</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>Zonula occludens-1 protein</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abasubong, Kenneth Prudence</creatorcontrib><creatorcontrib>Jiang, Guang-Zhen</creatorcontrib><creatorcontrib>Guo, Hui-xing</creatorcontrib><creatorcontrib>Wang, Xi</creatorcontrib><creatorcontrib>Li, Xiang-Fei</creatorcontrib><creatorcontrib>Yan-zou, Dong</creatorcontrib><creatorcontrib>Liu, Wen-bin</creatorcontrib><creatorcontrib>Desouky, Hesham Eed</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Fish physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abasubong, Kenneth Prudence</au><au>Jiang, Guang-Zhen</au><au>Guo, Hui-xing</au><au>Wang, Xi</au><au>Li, Xiang-Fei</au><au>Yan-zou, Dong</au><au>Liu, Wen-bin</au><au>Desouky, Hesham Eed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream</atitle><jtitle>Fish physiology and biochemistry</jtitle><stitle>Fish Physiol Biochem</stitle><addtitle>Fish Physiol Biochem</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>49</volume><issue>6</issue><spage>1079</spage><epage>1095</epage><pages>1079-1095</pages><issn>0920-1742</issn><eissn>1573-5168</eissn><abstract>The primary organ for absorbing dietary fat is the gut. High dietary lipid intake negatively affects health and absorption by causing fat deposition in the intestine. This research explores the effect of a high-fat diet (HFD) on intestinal microbiota and its connections with endoplasmic reticulum stress and inflammation. 60 fish (average weight: 45.84 ± 0.07 g) were randomly fed a control diet (6% fat) and a high-fat diet (12 % fat) in four replicates for 12 weeks. From the result, hepatosomatic index (HSI), Visceralsomatic index (VSI), abdominal fat (ADF), Intestosomatic index (ISI), mesenteric fat (MFI), Triglycerides (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) content were substantially greater on HFD compared to the control diet. Moreover, fish provided the HFD significantly obtained lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. In contrast, an opposite result was seen in malondialdehyde (MDA) content in comparison to the control. HFD significantly altered intestinal microbiota in blunt snout bream, characterized by an increased abundance of Aeromonas, Plesiomonas proteobacteria, and firmicutes with a reduced abundance of Cetobacterium and ZOR0006 . The transcriptional levels of glucose-regulated protein 78 ( grp78 ), inositol requiring enzyme 1 ( ire1 ), spliced X box-binding protein 1 ( xbp1 ), DnaJ heat shock protein family (Hsp40) member B9 ( dnajb9 ), tumor necrosis factor alpha ( tnf-α ), nuclear factor-kappa B ( nf-κb ) , monocyte chemoattractant protein-1 ( mcp-1 ), and interleukin-6 ( il-6 ) in the intestine were markedly upregulated in fish fed HFD than the control group. Also, the outcome was similar in bax , caspases-3 , and caspases-9, ZO-1 , Occludin-1, and Occludin-2 expressions. In conclusion, HFD could alter microbiota and facilitate chronic inflammatory signals via activating endoplasmic reticulum stress.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37831370</pmid><doi>10.1007/s10695-023-01240-2</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-1742
ispartof Fish physiology and biochemistry, 2023-12, Vol.49 (6), p.1079-1095
issn 0920-1742
1573-5168
language eng
recordid cdi_proquest_miscellaneous_2877389764
source Springer Link
subjects Absorption
Abundance
Animal Anatomy
Animal Biochemistry
Animal Physiology
Animals
Antioxidants - metabolism
Apoptosis
Biomedical and Life Sciences
Bream
Caspases - metabolism
Caspases - pharmacology
Cholesterol
Cyprinidae - metabolism
Cypriniformes - metabolism
Diet
Diet, High-Fat
Dietary intake
Endoplasmic reticulum
Endoplasmic Reticulum Stress
Esterification
Fatty acids
Fish
Freshwater & Marine Ecology
Gastrointestinal Microbiome
Glutathione
Glutathione peroxidase
Heat shock
Heat shock proteins
High fat diet
Histology
Hsp40 protein
Inflammation
Inositol
Inositols
Interleukin 6
Intestinal microflora
Intestine
Intestines
Life Sciences
Lipids
Microbiota
Microorganisms
Monocyte chemoattractant protein
Monocyte chemoattractant protein 1
Monocytes
Morphology
Necrosis
NF-κB protein
Occludin - metabolism
Occludin - pharmacology
Peroxidase
Proteins
Superoxide dismutase
Triglycerides
Tumor necrosis factor-TNF
Tumor necrosis factor-α
Zonula occludens-1 protein
Zoology
title High-fat diet alters intestinal microbiota and induces endoplasmic reticulum stress via the activation of apoptosis and inflammation in blunt snout bream
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-fat%20diet%20alters%20intestinal%20microbiota%20and%20induces%20endoplasmic%20reticulum%20stress%20via%20the%20activation%20of%20apoptosis%20and%20inflammation%20in%20blunt%20snout%20bream&rft.jtitle=Fish%20physiology%20and%20biochemistry&rft.au=Abasubong,%20Kenneth%20Prudence&rft.date=2023-12-01&rft.volume=49&rft.issue=6&rft.spage=1079&rft.epage=1095&rft.pages=1079-1095&rft.issn=0920-1742&rft.eissn=1573-5168&rft_id=info:doi/10.1007/s10695-023-01240-2&rft_dat=%3Cproquest_cross%3E2907824489%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-1c66f3abfef08a3f2e2acf02cc9e858d1ece27a8bddbfc0e91a9cdb6479b87fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2907824489&rft_id=info:pmid/37831370&rfr_iscdi=true