Loading…
A general neural network model co-driven by mechanism and data for the reliable design of gas-liquid T-junction microdevices
In recent years, many models have been developed to describe the gas-liquid microdispersion process, which mainly rely on mechanistic analysis and may not be universally applicable. In order to provide a more comprehensive model and, most significantly, to provide a model for design, we have establi...
Saved in:
Published in: | Lab on a chip 2023-11, Vol.23 (22), p.4888-49 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, many models have been developed to describe the gas-liquid microdispersion process, which mainly rely on mechanistic analysis and may not be universally applicable. In order to provide a more comprehensive model and, most significantly, to provide a model for design, we have established a general database of microbubble generation in T-junction microdevices, including 854 data points from 12 pieces of literature. A neural network model that combines mechanistic and data modeling is developed. By transfer learning, more accurate results can be obtained. Additionally, we have proposed a design method that enables a relative deviation of less than 5% from the expected bubble size. A new device was designed and prepared to confirm the reliability of the method, which can prepare smaller bubbles than other common T-junction devices. In this way, a general and universal database and model are established and a design method for a gas-liquid T-junction microreactor is developed.
A neural network model based on a T-junction gas-liquid microdispersion database was developed and used to achieve good prediction and design performance. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/d3lc00355h |