Loading…
Bioimaging based on Poly(ethylenimine)-Coated Carbon Dots and Gold Nanoparticles for pH Sensing and Metal Enhanced Fluorescence
When exposed to specific light wavelengths, carbon dots (CDs), which tend to be fluorescent, can emit colorful light. It provides them with a lot of adaptability for different applications including bioimaging, optoelectronics, and even environmental sensing. Poly(ethylenimine) (PEI) coated carbon d...
Saved in:
Published in: | ACS applied bio materials 2023-11, Vol.6 (11), p.4935-4943 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When exposed to specific light wavelengths, carbon dots (CDs), which tend to be fluorescent, can emit colorful light. It provides them with a lot of adaptability for different applications including bioimaging, optoelectronics, and even environmental sensing. Poly(ethylenimine) (PEI) coated carbon dots (PEI-CDs) with a long emission wavelength were synthesized via the hydrothermal method. The resultant CDs show strong fluorescence with quantum yield up to 20.2%. The PEI-CDs exist with distinct pH-sensitive features with pH values in the range of 2-14. The optical characteristics of CDs are pH-responsive due to the presence of different amine groups on PEI, which is a functional polycationic polymer. One of the most widely employed nanoparticles for improving the fluorescence plasmonic characteristics of a nanocomposite is gold. Gold nanoparticles were coupled with PEI-CDs in this assay by using the EDC-NHS coupling to increase the photoluminescence property of the PEI-CDs by using the metal-enhanced fluorescence approach. In the presence of gold nanoparticles, the fluorescence is enhanced 5-6 times. The likely mechanism in our investigation was primarily derived from enhancement of the intrinsic radiative decay rate rather than the local electric field impact. Moreover, PEI-CDs can be used as a bioimaging agent, as these molecules are nontoxic to the cells, and the positively charged PEI-CDs have the potential for nuclear targeting, allowing for electrostatic contact with DNA in the nucleus. This finding will expand the application that the PEI-CDs can be used in the future for targeted imaging applications. |
---|---|
ISSN: | 2576-6422 2576-6422 |
DOI: | 10.1021/acsabm.3c00639 |