Loading…
Switch in Selectivities by Dinuclear Nickel Catalysis: 1,4-Hydroarylation of 1,3-Dienes to Z‑Olefins
One of the most challenging tasks in organic synthesis is to control selectivities, especially switching the well-known selectivity to obtain new isomers that were previously inaccessible. Inspired by biological catalysis involving multiple metal centers, catalysis enabled by binuclear metal complex...
Saved in:
Published in: | Journal of the American Chemical Society 2023-10, Vol.145 (45), p.24877-24888 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the most challenging tasks in organic synthesis is to control selectivities, especially switching the well-known selectivity to obtain new isomers that were previously inaccessible. Inspired by biological catalysis involving multiple metal centers, catalysis enabled by binuclear metal complexes offers the potential to induce reactivity and selectivity that might not be available to mononuclear catalysts. Herein, we describe that using a macrocyclic bis pyridyl diimine dinickel complex as the catalyst, the commonly observed 4,3-regioselectivity of hydroarylation of 1,3-dienes is switched to 1,4-hydroarylation with thermodynamically less stable Z-stereoselectivity, offering challenging synthetic target Z-olefins. DFT calculations show that the activation of 1,3-diene proceeds through dinuclear Ni-diolefin coordination, and the synergistic effects of two Ni nuclei enable reactivity and selectivity of this binuclear catalysis substantially different from those of mononuclear nickel complexes in the current reaction. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.3c09283 |