Loading…
Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping
For pt.I, see ibid., vol.45, p.2253-70 (2000). We extend the method of controlled Lagrangians (CL) to include potential shaping, which achieves complete state-space asymptotic stabilization of mechanical systems. The CL method deals with mechanical systems with symmetry and provides symmetry-preserv...
Saved in:
Published in: | IEEE transactions on automatic control 2001-10, Vol.46 (10), p.1556-1571 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For pt.I, see ibid., vol.45, p.2253-70 (2000). We extend the method of controlled Lagrangians (CL) to include potential shaping, which achieves complete state-space asymptotic stabilization of mechanical systems. The CL method deals with mechanical systems with symmetry and provides symmetry-preserving kinetic shaping and feedback-controlled dissipation for state-space stabilization in all but the symmetry variables. Potential shaping complements the kinetic shaping by breaking symmetry and stabilizing the remaining state variables. The approach also extends the method of controlled Lagrangians to include a class of mechanical systems without symmetry such as the inverted pendulum on a cart that travels along an incline. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/9.956051 |