Loading…
Rapid AMR prediction in Pseudomonas aeruginosa combining MALDI–TOF MS with DNN model
BACKGROUNDPseudomonas aeruginosa is a significant clinical pathogen that poses a substantial threat due to its extensive drug resistance. The rapid and precise identification of this resistance is crucial for effective clinical treatment. Although matrix-assisted laser desorption/ionization time-of-...
Saved in:
Published in: | Journal of applied microbiology 2023-11, Vol.134 (11) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BACKGROUNDPseudomonas aeruginosa is a significant clinical pathogen that poses a substantial threat due to its extensive drug resistance. The rapid and precise identification of this resistance is crucial for effective clinical treatment. Although matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for antibiotic susceptibility differentiation of some bacteria in recent years, the genetic diversity of P. aeruginosa complicates population analysis. Rapid identification of antimicrobial resistance (AMR) in P. aeruginosa based on a large amount of MALDI-TOF-MS data has not yet been reported. In this study, we employed publicly available datasets for P. aeruginosa, which contain data on bacterial resistance and MALDI-TOF-MS spectra. We introduced a deep neural network model, synergized with a strategic sampling approach (SMOTEENN) to construct a predictive framework for AMR of three widely used antibiotics.RESULTSThe framework achieved area under the curve values of 90%, 85%, and 77% for Tobramycin, Cefepime, and Meropenem, respectively, surpassing conventional classifiers. Notably, random forest algorithm was used to assess the significance of features and post-hoc analysis was conducted on the top 10 features using Cohen's d. This analysis revealed moderate effect sizes (d = 0.5-0.8) in Tobramycin and Cefepime models. Finally, putative AMR biomarkers were identified in this study.CONCLUSIONSThis work presented an AMR prediction tool specifically designed for P. aeruginosa, which offers a hopeful pathway for clinical decision-making. |
---|---|
ISSN: | 1365-2672 1365-2672 |
DOI: | 10.1093/jambio/lxad248 |