Loading…
Lysozyme aggregation and unfolding in ionic liquid solvents: Insights from small angle X-ray scattering and high throughput screening
[Display omitted] Understanding protein behaviour is crucial for developing functional solvent systems. Ionic liquids (ILs) are designer salts with versatile ion combinations, where some suppress unfavourable protein behaviour. This work utilizes small angle X-ray scattering (SAXS) to investigate th...
Saved in:
Published in: | Journal of colloid and interface science 2024-02, Vol.655, p.133-144 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Understanding protein behaviour is crucial for developing functional solvent systems. Ionic liquids (ILs) are designer salts with versatile ion combinations, where some suppress unfavourable protein behaviour. This work utilizes small angle X-ray scattering (SAXS) to investigate the size and shape changes of model protein hen egg white lysozyme (HEWL) in 137 IL and salt solutions. Guinier, Kratky, and pair distance distribution analysis were used to evaluate the protein size, shape, and aggregation changes in these solvents. At low IL and salt concentration (1 mol%), HEWL remained monodispersed and globular. Most ILs increased HEWL size compared to buffer, while the nitrate and mesylate anions induced the most significant size increases. IL cation branching, hydroxyl groups, and longer alkyl chains counteracted this size increase. Common salts exhibited specific ion effects, while the IL effect varied with concentration due to complex ion-pairing. Protein aggregation and unfolding occurred at 10 mol% IL, altering the protein shape, especially for ILs with multiple alkyl chains on the cation, or with a mesylate/nitrate anion. This study highlights the usefulness of adopting a high-throughput SAXS strategy for understanding IL effects on protein behaviour and provides insights on controlling protein aggregation and unfolding with ILs. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.10.139 |