Loading…
Constant raindrop fall speed profiles derived from Doppler radar data analyses for steady nonconvective precipitation
For nonconvective, steady light rain with rain rates < 5 mm h-1 the mean Doppler velocity of raindrop spectra was found to be constant below the melting band, when the drop-free fall speed was adjusted for pressure. The Doppler radar-weighted raindrop diameters varied from case to case from 1.5 t...
Saved in:
Published in: | Journal of the atmospheric sciences 2005, Vol.62 (1), p.220-230 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For nonconvective, steady light rain with rain rates < 5 mm h-1 the mean Doppler velocity of raindrop spectra was found to be constant below the melting band, when the drop-free fall speed was adjusted for pressure. The Doppler radar-weighted raindrop diameters varied from case to case from 1.5 to 2.5 mm while rain rates changed from 1.2 to 2.9 mm h-1. Significant changes of advected velocity moments were observed over periods of 4 min. These findings were corroborated by three independent systems: a Doppler radar for establishing vertical air speed and mean terminal drop speeds [using extended Velocity Azimuth Display (EVAD) analyses], a Joss-Waldvogel disdrometer at the ground, and a Particle Measuring System (PMS) 2-DP probe flown on an aircraft. These measurements were supported by data from upper-air soundings. The reason why inferred raindrop spectra do not change with height is the negligible interaction rate between raindrops at low rain rates. At low rain rates, numerical box models of drop collisions strongly support this interpretation. It was found that increasing characteristic drop diameters are correlated with increasing rain rates. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/JAS-3369.1 |