Loading…
Dietary Chito-oligosaccharide attenuates LPS-challenged intestinal inflammation via regulating mitochondrial apoptotic and MAPK signaling pathway
To investigate the regulatory effects of Chito-oligosaccharide (COS) on the anti-oxidative, anti-inflammatory, and MAPK signaling pathways. A total of 40 28-day-old weaned piglets were randomly allotted to 4 equal groups [including the control group, lipopolysaccharide (LPS) group, COS group, and CO...
Saved in:
Published in: | International immunopharmacology 2024-01, Vol.126, p.111153-111153, Article 111153 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To investigate the regulatory effects of Chito-oligosaccharide (COS) on the anti-oxidative, anti-inflammatory, and MAPK signaling pathways. A total of 40 28-day-old weaned piglets were randomly allotted to 4 equal groups [including the control group, lipopolysaccharide (LPS) group, COS group, and COS*LPS group]. On the morning of d 14 and 21, piglets were injected with saline or LPS. At 2 h post-injection, whole blood samples were collected on d 14 and 21, and small intestine and liver samples were collected and analyzed on d 21. The results showed that COS inhibited the LPS-induced increase of malondialdehyde (MDA) concentration and hepatic TNF-α cytokines. COS significantly increased the serum total antioxidant capability (T-AOC) value on d 14, and total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) activities in both serum and liver on d 21. Furthermore, it increased hepatic catalase (CAT) activity. COS also increased the LPS-induced decrease in serum IgG concentrations. Immunohistochemical analysis results showed that COS significantly increased the jejunal and ileal Caspase 3, and ileal CD
values challenged by LPS. Dietary COS decreased the LPS-induced jejunal and ileal BAX and CCL2 mRNA levels, markedly decreased ileal COX2 and SOD1 mRNA levels, while increasing ileal iNOS. Furthermore, COS significantly increased the LPS-induced jejunal and ileal p-P38 and MyD88, as well as jejunal P38, while it effectively suppressed jejunal JNK1, and jejunal and ileal JNK2, p-JNK1, and p-JNK2 protein expressions. These results demonstrated that COS could be beneficial by attenuating LPS-challenged intestinal inflammation via regulating mitochondrial apoptotic and MAPK signaling pathways. |
---|---|
ISSN: | 1567-5769 1878-1705 |
DOI: | 10.1016/j.intimp.2023.111153 |