Loading…
Multiparametric MRI-based fusion radiomics for predicting telomerase reverse transcriptase (TERT) promoter mutations and progression-free survival in glioblastoma: a multicentre study
Purpose This study evaluated the performance of multiparametric magnetic resonance imaging (MRI)–based fusion radiomics models (MMFRs) to predict telomerase reverse transcriptase (TERT) promoter mutation status and progression-free survival (PFS) in glioblastoma patients. Methods We retrospectively...
Saved in:
Published in: | Neuroradiology 2024, Vol.66 (1), p.81-92 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
This study evaluated the performance of multiparametric magnetic resonance imaging (MRI)–based fusion radiomics models (MMFRs) to predict telomerase reverse transcriptase (TERT) promoter mutation status and progression-free survival (PFS) in glioblastoma patients.
Methods
We retrospectively analysed 208 glioblastoma patients from two hospitals. Quantitative imaging features were extracted from each patient’s T1-weighted, T1-weighted contrast-enhanced, and T2-weighted preoperative images. Using a coarse-to-fine feature selection strategy, four radiomics signature models were constructed based on the three MRI sequences and their combination for TERT promoter mutation status and PFS; model performance was subsequently evaluated. Subgroup analyses were performed by the radiomics signature of TERT promoter mutation status and PFS to distinguish patients who could benefit from prolonged temozolomide chemotherapy cycles.
Results
TERT promoter mutation status was best predicted by MMFR, with an area under the curve (AUC) of 0.816 and 0.812 for the training and internal validation sets, respectively. The external test set also achieved stable and optimal prediction results (AUC, 0.823). MMFR better predicted patient PFS compared with the single-sequence radiomics signature in the test set (
C
-index, 0.643 vs 0.561 vs 0.620 vs 0.628). Subgroup analyses showed that more than six cycles of postoperative temozolomide chemotherapy were associated with improved PFS for patients in class 2 (high TERT promoter mutation and high survival rates; HR, 0.222; 95% CI, 0.054 − 0.923;
p
= 0.025).
Conclusion
MMFR is an effective method to predict TERT promoter mutations and PFS in patients with glioblastoma. Moreover, subgroup analysis could differentiate patients who may benefit from prolonged TMZ chemotherapy cycles. |
---|---|
ISSN: | 0028-3940 1432-1920 |
DOI: | 10.1007/s00234-023-03245-3 |