Loading…
Benchmarking Basis Sets for Density Functional Theory Thermochemistry Calculations: Why Unpolarized Basis Sets and the Polarized 6-311G Family Should Be Avoided
Basis sets are a crucial but often largely overlooked choice in setting up quantum chemistry calculations. The choice of the basis set can be critical in determining the accuracy and calculation time of your quantum chemistry calculations. Clear recommendations based on thorough benchmarking are ess...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2023-12, Vol.127 (48), p.10295-10306 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Basis sets are a crucial but often largely overlooked choice in setting up quantum chemistry calculations. The choice of the basis set can be critical in determining the accuracy and calculation time of your quantum chemistry calculations. Clear recommendations based on thorough benchmarking are essential but not readily available currently. This study investigates the relative quality of basis sets for general properties by benchmarking basis set performance for a diverse set of 139 reactions (from the diet-150-GMTKN55 data set). In our analysis, we find the distributions of errors are often significantly non-Gaussian, meaning that the joint consideration of median errors, mean absolute errors, and outlier statistics is helpful to provide a holistic understanding of basis set performance. Our direct comparison of performance between most modern basis sets provides quantitative evidence for basis set recommendations that broadly align with the established understanding of basis set experts and is evident in the design of modern basis sets. For example, while zeta is a good measure of quality, it is not the only determining factor for an accurate calculation with unpolarized double- and triple-ζ basis sets (like 6-31G and 6-311G) having very poor performance. Appropriate use of polarization functions (e.g., 6-31G*) is essential to obtain the accuracy offered by double- or triple-ζ basis sets. In our study, the best performances for double- and triple-ζ basis sets are 6-31++G** and pcseg-2, respectively. However, the performances of singly polarized double-ζ and doubly polarized triple-ζ basis sets are quite similar with one key exception: the polarized 6-311G basis set family has poor parametrization, which means its performance is more like a double-ζ than a triple-ζ basis set. All versions of the 6-311G basis set family should be avoided entirely for valence chemistry calculations moving forward. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.3c05573 |