Loading…

Bidirectional Invisible Photoresponse Implemented in a Traps Matrix-Combination toward Fully Optical Artificial Synapses

Fully optical artificial synapses are crucial hardware for neuromorphic computing, which is very promising to address the future large-scale computing capacity problem. The key characteristic required in a semiconductor device to emulate synaptic potentiation and depression in a fully optical artifi...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-12, Vol.15 (48), p.55916-55924
Main Authors: Wen, Zheng, Wang, Shuhan, Yi, Fangzhou, Zheng, Dingting, Yan, Chengyuan, Sun, Zhenhua
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fully optical artificial synapses are crucial hardware for neuromorphic computing, which is very promising to address the future large-scale computing capacity problem. The key characteristic required in a semiconductor device to emulate synaptic potentiation and depression in a fully optical artificial synapse is the bidirectional photoresponse. This work integrates wide-band-gap TiO2 polycrystals and narrow-band-gap PbS quantum dots into a graphene transistor simultaneously, providing the device with both near-ultraviolet and near-infrared photoresponses through the photogating effect. Moreover, the TiO2 serves as a hole-trapping matrix and the PbS as an electron-trapping matrix, which impose opposite effects to the device after photoexcitation, resulting in a photoresponse in the opposite polarity. As a result, the device demonstrates a wavelength-dependent bidirectional photoresponse, which enables it to be utilized as a fully optical artificial synapse. By using near-ultraviolet or near-infrared lights as stimuli, the device successfully mimics synaptic plasticity, including synaptic potentiation/depression, paired-pulse facilitation, and spike-rating-dependent plasticity, as well as the human brain-like transition of short-term memory and long-term memory and learning-experience behavior. This work validates the methodology of combining different trap matrices to achieve the bidirectional photoresponse, which can significantly inspire future research in fully optical artificial synapses.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c06590