Loading…
Impact of cloud cover on solar radiative biases in deep convective regimes
Conflicting claims have been made concerning the magnitude of the bias in solar radiative transfer calculations when horizontal photon transport is neglected for deep convective scenarios. The difficulty of obtaining a realistic set of cloud scenes for situations of complex cloud geometry, while cer...
Saved in:
Published in: | Journal of the atmospheric sciences 2005-06, Vol.62 (6), p.1989-2000 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conflicting claims have been made concerning the magnitude of the bias in solar radiative transfer calculations when horizontal photon transport is neglected for deep convective scenarios. The difficulty of obtaining a realistic set of cloud scenes for situations of complex cloud geometry, while certain characteristics such as total cloud cover are systematically controlled, has hindered the attempt to reach a consensus. Here, a simple alternative approach is adopted. An ensemble of cloud scenes generated by a cloud resolving model are modified by an idealized function that progressively alters the cirrus anvil coverage without affecting the realism of the scene produced. Comparing three-dimensional radiative calculations with the independent column approximation for all cloud scenes, it is found that the bias in scene albedo can reach as much as 22% when the sun is overhead and 46% at low sun angles. The bias is an asymmetrical function of cloud cover with a maximum attained at cirrus anvil cloud cover of approximately 30%-40%. With a cloud cover of 15%, the bias is half its maximum value, while it is limited for coverage exceeding 80%. The position of the peak occurs at the cloud cover coinciding with the maximum number of independent clouds present in the scene. Increasing the cloud cover past this point produces a decrease in the number of isolated clouds because of cloud merging, with a consequential bias reduction. With this systematic documentation of the biases as a function of total cloud cover, it is possible to identify two contributions to the total error: the geometrical consequences of the effective cloud cover increase at low sun angles and the true 3D scattering effect of photons deviating from the original path direction. An attempt to account for the former geometrical contribution to the 1D bias is made by performing a simple correction technique, whereby the field is sheared by the tangent of the solar zenith angle. It is found that this greatly reduces the 1D biases at low sun angles. Because of the small aspect ratio of the cirrus cloud deck, the remaining bias contribution is small in magnitude and almost independent of solar zenith angle. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/JAS3442.1 |