Loading…

Tunable Dynamics in a Multistrain Transcriptional Pulse Generator

One challenge in synthetic biology is the tuning of regulatory components within gene circuits to elicit a specific behavior. This challenge becomes more difficult in synthetic microbial consortia since each strain’s circuit must function at the intracellular level and their combination must operate...

Full description

Saved in:
Bibliographic Details
Published in:ACS synthetic biology 2023-12, Vol.12 (12), p.3531-3543
Main Authors: Zong, David M., Sadeghpour, Mehdi, Molinari, Sara, Alnahhas, Razan N., Hirning, Andrew J., Giannitsis, Charilaos, Ott, William, Josić, Krešimir, Bennett, Matthew R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One challenge in synthetic biology is the tuning of regulatory components within gene circuits to elicit a specific behavior. This challenge becomes more difficult in synthetic microbial consortia since each strain’s circuit must function at the intracellular level and their combination must operate at the population level. Here we demonstrate that circuit dynamics can be tuned in synthetic consortia through the manipulation of strain fractions within the community. To do this, we construct a microbial consortium comprised of three strains of engineered Escherichia coli that, when cocultured, use homoserine lactone-mediated intercellular signaling to create a multistrain incoherent type-1 feedforward loop (I1-FFL). Like naturally occurring I1-FFL motifs in gene networks, this engineered microbial consortium acts as a pulse generator of gene expression. We demonstrate that the amplitude of the pulse can be easily tuned by adjusting the relative population fractions of the strains. We also develop a mathematical model for the temporal dynamics of the microbial consortium. This model allows us to identify population fractions that produced desired pulse characteristics, predictions that were confirmed for all but extreme fractions. Our work demonstrates that intercellular gene circuits can be effectively tuned simply by adjusting the starting fractions of each strain in the consortium.
ISSN:2161-5063
2161-5063
DOI:10.1021/acssynbio.3c00434