Loading…

Algebraic structures connected with pairs of compatible associative algebras

We study associative multiplications in semisimple associative algebras over ℂ compatible with the usual one or, in other words, linear deformations of semi-simple associative algebras over ℂ. It turns out that these deformations are in one-to-one correspondence with representations of certain algeb...

Full description

Saved in:
Bibliographic Details
Published in:International Mathematics Research Notices 2006, Vol.2006 (19)
Main Authors: Odesskii, Alexander, Sokolov, Vladimir
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study associative multiplications in semisimple associative algebras over ℂ compatible with the usual one or, in other words, linear deformations of semi-simple associative algebras over ℂ. It turns out that these deformations are in one-to-one correspondence with representations of certain algebraic structures, which we call M-structures in the matrix case and PM-structures in the case of direct sums of several matrix algebras. We also investigate various properties of PM-structures, provide numerous examples and describe an important class of PM-structures. The classification of these PM-structures naturally leads to affine Dynkin diagrams of A,D,E-types.
ISSN:1073-7928
1687-1197
1687-0247
DOI:10.1155/IMRN/2006/43734