Loading…
Algebraic structures connected with pairs of compatible associative algebras
We study associative multiplications in semisimple associative algebras over ℂ compatible with the usual one or, in other words, linear deformations of semi-simple associative algebras over ℂ. It turns out that these deformations are in one-to-one correspondence with representations of certain algeb...
Saved in:
Published in: | International Mathematics Research Notices 2006, Vol.2006 (19) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study associative multiplications in semisimple associative algebras over ℂ compatible with the usual one or, in other words, linear deformations of semi-simple associative algebras over ℂ. It turns out that these deformations are in one-to-one correspondence with representations of certain algebraic structures, which we call M-structures in the matrix case and PM-structures in the case of direct sums of several matrix algebras. We also investigate various properties of PM-structures, provide numerous examples and describe an important class of PM-structures. The classification of these PM-structures naturally leads to affine Dynkin diagrams of A,D,E-types. |
---|---|
ISSN: | 1073-7928 1687-1197 1687-0247 |
DOI: | 10.1155/IMRN/2006/43734 |