Loading…

Modelling the Environment of a Mobile Robot with the Embedded Flow State Machine

A type of topological approach to mobile robot navigation is discussed and experimentally evaluated. The environment as experienced by a moving robot is treated as a dynamical system. Simple types of reactive behavior are supplemented with eventual decisions to switch between them. When switching cr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & robotic systems 2006-06, Vol.46 (2), p.181-199
Main Authors: Ster, Branko, Dobnikar, Andrej
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A type of topological approach to mobile robot navigation is discussed and experimentally evaluated. The environment as experienced by a moving robot is treated as a dynamical system. Simple types of reactive behavior are supplemented with eventual decisions to switch between them. When switching criteria are defined, the system may be described in the form similar to a finite state machine. Since it is embedded in the environment and dependent on the sensory flow of the robot, we introduce the term "Embedded flow state machine" (EFSM). We implemented it with a recurrent neural network, trained on a sequence of sensory contents and actions. One of the main virtues of this approach is that no explicit localization is required, since the recurrent neural network holds the state implicitly. The EFSM is applicable to multi-step prediction of sensory information and the travelled distances between decision points, given a sequence of decisions at decision points. Thus, the optimal path to a specified goal can be sought. One of the main issues is, for how many steps ahead the prediction is reliable enough. In other words, is it feasible to perform environment modelling and path planning in this manner? The approach is tested on a miniature mobile robot, equipped with proximity sensors and a color video camera. Decision 'points,' where deviations from the wall-following behavior are allowed, are based on color object recognition. In the case of an experimental environment of medium complexity, this approach was successful.[PUBLICATION ABSTRACT]
ISSN:0921-0296
1573-0409
DOI:10.1007/s10846-006-9059-z