Loading…
Improved Scalar Multiplication on Elliptic Curves Defined over F2mn
We propose two improved scalar multiplication methods on elliptic curves over Fqn where q = 2m using Frobenius expansion. The scalar multiplication of elliptic curves defined over subfield Fq can be sped up by Frobenius expansion. Previous methods are restricted to the case of a small m. However, wh...
Saved in:
Published in: | ETRI journal 2004-06, Vol.26 (3), p.241-251 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose two improved scalar multiplication methods on elliptic curves over Fqn where q = 2m using Frobenius expansion. The scalar multiplication of elliptic curves defined over subfield Fq can be sped up by Frobenius expansion. Previous methods are restricted to the case of a small m. However, when m is small, it is hard to find curves having good cryptographic properties.
Our methods are suitable for curves defined over medium‐sized fields, that is, 10 ≤ m ≤ 20. These methods are variants of the conventional multiple‐base binary (MBB) method combined with the window method. One of our methods is for a polynomial basis representation with software implementation, and the other is for a normal basis representation with hardware implementation. Our software experiment shows that it is about 10% faster than the MBB method, which also uses Frobenius expansion, and about 20% faster than the Montgomery method, which is the fastest general method in polynomial basis implementation. |
---|---|
ISSN: | 1225-6463 2233-7326 |
DOI: | 10.4218/etrij.04.0103.0073 |