Loading…
Three-dimensional pulsatile flow through a bifurcation
Pulsatile flow of an incompressible, Newtonian fluid through a symmetric bifurcated rigid channel was numerically analysed by solving the three-dimensional Navier-Stokes equations. The upstream flow conditions were taken from an experimentally measured human arterial pulse cycle. The bifurcation was...
Saved in:
Published in: | International journal of numerical methods for heat & fluid flow 1997-12, Vol.7 (8), p.843-862 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pulsatile flow of an incompressible, Newtonian fluid through a symmetric bifurcated rigid channel was numerically analysed by solving the three-dimensional Navier-Stokes equations. The upstream flow conditions were taken from an experimentally measured human arterial pulse cycle. The bifurcation was symmetrical with a branch angle of 60° and a daughter to mother area ratio of 2.0. The predicted velocity patterns were in qualitative agreement with experimental measurements available in the literature. The effect of unsteadiness on the various flow characteristics was studied. The most drastic effect observed was on the flow reversal regions. There was no flow reversal at the highest inlet Reynolds number in the pulse cycle, whereas in the case of steady flow at the same Reynolds number, the flow reversal region was the largest. The presence of secondary flow was observed at all times during the pulse cycle. Shear stress was calculated along the outer and inner walls and the low and high time averaged shear stress regions correspond to the clinically observed sites of formation of atherosclerotic plaque and lesions. |
---|---|
ISSN: | 0961-5539 1758-6585 |
DOI: | 10.1108/09615539710193010 |