Loading…

Predictive metabolomic signatures for safety assessment of three plastic nanoparticles using intestinal organoids

Nanoplastic particles are pervasive environmental contaminants with potential health risks, while mouse intestinal organoids provide accurate in vitro models for studying these interactions. Metabolomics, especially through LC-MS, enables detailed cellular response studies, and there's a novel...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2024-02, Vol.913, p.169606-169606, Article 169606
Main Authors: Xuan, Lihui, Luo, Jinhua, Qu, Can, Guo, Peiyu, Yi, Wensen, Yang, Jingjing, Yan, Yuhui, Guan, Hua, Zhou, Pingkun, Huang, Ruixue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-5214efefcbe1fde19e757555bf9564047665f19c012d535043d8db3a07ff1cfb3
cites cdi_FETCH-LOGICAL-c404t-5214efefcbe1fde19e757555bf9564047665f19c012d535043d8db3a07ff1cfb3
container_end_page 169606
container_issue
container_start_page 169606
container_title The Science of the total environment
container_volume 913
creator Xuan, Lihui
Luo, Jinhua
Qu, Can
Guo, Peiyu
Yi, Wensen
Yang, Jingjing
Yan, Yuhui
Guan, Hua
Zhou, Pingkun
Huang, Ruixue
description Nanoplastic particles are pervasive environmental contaminants with potential health risks, while mouse intestinal organoids provide accurate in vitro models for studying these interactions. Metabolomics, especially through LC-MS, enables detailed cellular response studies, and there's a novel interest in comparing metabolic changes across nanoparticle species using gut organoids. This study used a mouse intestinal organoid combined with cell model to explore the differences in metabolites and toxicity mechanisms induced by exposure to three nanoplastics (PS, PTFE, and PMMA). The results showed that PS, PTFE, and PMMA exposure reduced mitochondrial membrane potential, intracellular ROS accumulation and oxidative stress, and inhibited the AKT/mTOR signaling pathway. Non-targeted metabolomics results confirmed that three types of nanoplastic particles regulate cellular status by regulating fatty acid metabolism, nucleotide metabolism, necroptosis and autophagy pathways. More importantly, these representative metabolites were further validated in model groups after mouse intestinal organoids and HCT116 cells were exposed to the respective NPs, indicating that organoid metabolomics results can be used to effectively predict toxicity. Untargeted metabolomics is sensitive enough to detect subtle metabolomic changes when functional cellular analysis shows no significant differences. Overall, our study reveals the underlying metabolic mechanism of NPs-induced intestinal organoid toxicity and provides new insights into the possible adverse consequences of NPs. [Display omitted] •The metabolic toxicity of PS-NPs, PMMA-NPs, and PTFE-NPs can be predicted using non-targeted metabolomics.•Intestinal organoids are powerful models for assessing the metabolic toxicity of nanoplastics in vitro.•Different types of nanoplastics cause different metabolic toxicity mechanisms in intestinal organoids.
doi_str_mv 10.1016/j.scitotenv.2023.169606
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2909086256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969723082360</els_id><sourcerecordid>2909086256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-5214efefcbe1fde19e757555bf9564047665f19c012d535043d8db3a07ff1cfb3</originalsourceid><addsrcrecordid>eNqFkcFu3CAQhlHUqNmmfYWWYy_egm3AHKOoaStFag_pGWE8bFjZsGHwSnn7sto013AZJL5_Bs1HyBfOtpxx-W2_RRdKKhCP25a13ZZLLZm8IBs-KN1w1sp3ZMNYPzRaanVFPiDuWT1q4O_JVTdwoVXfb8jTnwxTcCUcgS5Q7JjmtARHMeyiLWsGpD5litZDeaYWERAXiIUmT8tjBqCH2WKpiWhjOthcr3MNrRjijoZYoD5GO9OUdxUIE34kl97OCJ9e6jX5e_f94fZnc__7x6_bm_vG9awvjWh5Dx68G4H7CbgGJZQQYvRayEooKYXn2jHeTqITrO-mYRo7y5T33PmxuyZfz30POT2t9RtmCehgnm2EtKLpWM86oTlTb6KtZpoNshWyouqMupwQM3hzyGGx-dlwZk5qzN68qjEnNeaspiY_vwxZxwWm19x_FxW4OQNQt3IMkE-NILrqJ4MrZkrhzSH_AKK3p0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909086256</pqid></control><display><type>article</type><title>Predictive metabolomic signatures for safety assessment of three plastic nanoparticles using intestinal organoids</title><source>ScienceDirect Freedom Collection</source><creator>Xuan, Lihui ; Luo, Jinhua ; Qu, Can ; Guo, Peiyu ; Yi, Wensen ; Yang, Jingjing ; Yan, Yuhui ; Guan, Hua ; Zhou, Pingkun ; Huang, Ruixue</creator><creatorcontrib>Xuan, Lihui ; Luo, Jinhua ; Qu, Can ; Guo, Peiyu ; Yi, Wensen ; Yang, Jingjing ; Yan, Yuhui ; Guan, Hua ; Zhou, Pingkun ; Huang, Ruixue</creatorcontrib><description>Nanoplastic particles are pervasive environmental contaminants with potential health risks, while mouse intestinal organoids provide accurate in vitro models for studying these interactions. Metabolomics, especially through LC-MS, enables detailed cellular response studies, and there's a novel interest in comparing metabolic changes across nanoparticle species using gut organoids. This study used a mouse intestinal organoid combined with cell model to explore the differences in metabolites and toxicity mechanisms induced by exposure to three nanoplastics (PS, PTFE, and PMMA). The results showed that PS, PTFE, and PMMA exposure reduced mitochondrial membrane potential, intracellular ROS accumulation and oxidative stress, and inhibited the AKT/mTOR signaling pathway. Non-targeted metabolomics results confirmed that three types of nanoplastic particles regulate cellular status by regulating fatty acid metabolism, nucleotide metabolism, necroptosis and autophagy pathways. More importantly, these representative metabolites were further validated in model groups after mouse intestinal organoids and HCT116 cells were exposed to the respective NPs, indicating that organoid metabolomics results can be used to effectively predict toxicity. Untargeted metabolomics is sensitive enough to detect subtle metabolomic changes when functional cellular analysis shows no significant differences. Overall, our study reveals the underlying metabolic mechanism of NPs-induced intestinal organoid toxicity and provides new insights into the possible adverse consequences of NPs. [Display omitted] •The metabolic toxicity of PS-NPs, PMMA-NPs, and PTFE-NPs can be predicted using non-targeted metabolomics.•Intestinal organoids are powerful models for assessing the metabolic toxicity of nanoplastics in vitro.•Different types of nanoplastics cause different metabolic toxicity mechanisms in intestinal organoids.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2023.169606</identifier><identifier>PMID: 38159744</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>autophagy ; environment ; fatty acid metabolism ; HCT116 cells ; Intestinal organoids ; intestines ; membrane potential ; metabolites ; Metabolomics ; mice ; mitochondrial membrane ; Nanoplastic particles ; nanoplastics ; Nanotoxicity ; necroptosis ; organoids ; oxidative stress ; pollution ; safety assessment ; species ; toxicity</subject><ispartof>The Science of the total environment, 2024-02, Vol.913, p.169606-169606, Article 169606</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-5214efefcbe1fde19e757555bf9564047665f19c012d535043d8db3a07ff1cfb3</citedby><cites>FETCH-LOGICAL-c404t-5214efefcbe1fde19e757555bf9564047665f19c012d535043d8db3a07ff1cfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38159744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xuan, Lihui</creatorcontrib><creatorcontrib>Luo, Jinhua</creatorcontrib><creatorcontrib>Qu, Can</creatorcontrib><creatorcontrib>Guo, Peiyu</creatorcontrib><creatorcontrib>Yi, Wensen</creatorcontrib><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Yan, Yuhui</creatorcontrib><creatorcontrib>Guan, Hua</creatorcontrib><creatorcontrib>Zhou, Pingkun</creatorcontrib><creatorcontrib>Huang, Ruixue</creatorcontrib><title>Predictive metabolomic signatures for safety assessment of three plastic nanoparticles using intestinal organoids</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Nanoplastic particles are pervasive environmental contaminants with potential health risks, while mouse intestinal organoids provide accurate in vitro models for studying these interactions. Metabolomics, especially through LC-MS, enables detailed cellular response studies, and there's a novel interest in comparing metabolic changes across nanoparticle species using gut organoids. This study used a mouse intestinal organoid combined with cell model to explore the differences in metabolites and toxicity mechanisms induced by exposure to three nanoplastics (PS, PTFE, and PMMA). The results showed that PS, PTFE, and PMMA exposure reduced mitochondrial membrane potential, intracellular ROS accumulation and oxidative stress, and inhibited the AKT/mTOR signaling pathway. Non-targeted metabolomics results confirmed that three types of nanoplastic particles regulate cellular status by regulating fatty acid metabolism, nucleotide metabolism, necroptosis and autophagy pathways. More importantly, these representative metabolites were further validated in model groups after mouse intestinal organoids and HCT116 cells were exposed to the respective NPs, indicating that organoid metabolomics results can be used to effectively predict toxicity. Untargeted metabolomics is sensitive enough to detect subtle metabolomic changes when functional cellular analysis shows no significant differences. Overall, our study reveals the underlying metabolic mechanism of NPs-induced intestinal organoid toxicity and provides new insights into the possible adverse consequences of NPs. [Display omitted] •The metabolic toxicity of PS-NPs, PMMA-NPs, and PTFE-NPs can be predicted using non-targeted metabolomics.•Intestinal organoids are powerful models for assessing the metabolic toxicity of nanoplastics in vitro.•Different types of nanoplastics cause different metabolic toxicity mechanisms in intestinal organoids.</description><subject>autophagy</subject><subject>environment</subject><subject>fatty acid metabolism</subject><subject>HCT116 cells</subject><subject>Intestinal organoids</subject><subject>intestines</subject><subject>membrane potential</subject><subject>metabolites</subject><subject>Metabolomics</subject><subject>mice</subject><subject>mitochondrial membrane</subject><subject>Nanoplastic particles</subject><subject>nanoplastics</subject><subject>Nanotoxicity</subject><subject>necroptosis</subject><subject>organoids</subject><subject>oxidative stress</subject><subject>pollution</subject><subject>safety assessment</subject><subject>species</subject><subject>toxicity</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu3CAQhlHUqNmmfYWWYy_egm3AHKOoaStFag_pGWE8bFjZsGHwSnn7sto013AZJL5_Bs1HyBfOtpxx-W2_RRdKKhCP25a13ZZLLZm8IBs-KN1w1sp3ZMNYPzRaanVFPiDuWT1q4O_JVTdwoVXfb8jTnwxTcCUcgS5Q7JjmtARHMeyiLWsGpD5litZDeaYWERAXiIUmT8tjBqCH2WKpiWhjOthcr3MNrRjijoZYoD5GO9OUdxUIE34kl97OCJ9e6jX5e_f94fZnc__7x6_bm_vG9awvjWh5Dx68G4H7CbgGJZQQYvRayEooKYXn2jHeTqITrO-mYRo7y5T33PmxuyZfz30POT2t9RtmCehgnm2EtKLpWM86oTlTb6KtZpoNshWyouqMupwQM3hzyGGx-dlwZk5qzN68qjEnNeaspiY_vwxZxwWm19x_FxW4OQNQt3IMkE-NILrqJ4MrZkrhzSH_AKK3p0g</recordid><startdate>20240225</startdate><enddate>20240225</enddate><creator>Xuan, Lihui</creator><creator>Luo, Jinhua</creator><creator>Qu, Can</creator><creator>Guo, Peiyu</creator><creator>Yi, Wensen</creator><creator>Yang, Jingjing</creator><creator>Yan, Yuhui</creator><creator>Guan, Hua</creator><creator>Zhou, Pingkun</creator><creator>Huang, Ruixue</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20240225</creationdate><title>Predictive metabolomic signatures for safety assessment of three plastic nanoparticles using intestinal organoids</title><author>Xuan, Lihui ; Luo, Jinhua ; Qu, Can ; Guo, Peiyu ; Yi, Wensen ; Yang, Jingjing ; Yan, Yuhui ; Guan, Hua ; Zhou, Pingkun ; Huang, Ruixue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-5214efefcbe1fde19e757555bf9564047665f19c012d535043d8db3a07ff1cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>autophagy</topic><topic>environment</topic><topic>fatty acid metabolism</topic><topic>HCT116 cells</topic><topic>Intestinal organoids</topic><topic>intestines</topic><topic>membrane potential</topic><topic>metabolites</topic><topic>Metabolomics</topic><topic>mice</topic><topic>mitochondrial membrane</topic><topic>Nanoplastic particles</topic><topic>nanoplastics</topic><topic>Nanotoxicity</topic><topic>necroptosis</topic><topic>organoids</topic><topic>oxidative stress</topic><topic>pollution</topic><topic>safety assessment</topic><topic>species</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xuan, Lihui</creatorcontrib><creatorcontrib>Luo, Jinhua</creatorcontrib><creatorcontrib>Qu, Can</creatorcontrib><creatorcontrib>Guo, Peiyu</creatorcontrib><creatorcontrib>Yi, Wensen</creatorcontrib><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Yan, Yuhui</creatorcontrib><creatorcontrib>Guan, Hua</creatorcontrib><creatorcontrib>Zhou, Pingkun</creatorcontrib><creatorcontrib>Huang, Ruixue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xuan, Lihui</au><au>Luo, Jinhua</au><au>Qu, Can</au><au>Guo, Peiyu</au><au>Yi, Wensen</au><au>Yang, Jingjing</au><au>Yan, Yuhui</au><au>Guan, Hua</au><au>Zhou, Pingkun</au><au>Huang, Ruixue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive metabolomic signatures for safety assessment of three plastic nanoparticles using intestinal organoids</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2024-02-25</date><risdate>2024</risdate><volume>913</volume><spage>169606</spage><epage>169606</epage><pages>169606-169606</pages><artnum>169606</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Nanoplastic particles are pervasive environmental contaminants with potential health risks, while mouse intestinal organoids provide accurate in vitro models for studying these interactions. Metabolomics, especially through LC-MS, enables detailed cellular response studies, and there's a novel interest in comparing metabolic changes across nanoparticle species using gut organoids. This study used a mouse intestinal organoid combined with cell model to explore the differences in metabolites and toxicity mechanisms induced by exposure to three nanoplastics (PS, PTFE, and PMMA). The results showed that PS, PTFE, and PMMA exposure reduced mitochondrial membrane potential, intracellular ROS accumulation and oxidative stress, and inhibited the AKT/mTOR signaling pathway. Non-targeted metabolomics results confirmed that three types of nanoplastic particles regulate cellular status by regulating fatty acid metabolism, nucleotide metabolism, necroptosis and autophagy pathways. More importantly, these representative metabolites were further validated in model groups after mouse intestinal organoids and HCT116 cells were exposed to the respective NPs, indicating that organoid metabolomics results can be used to effectively predict toxicity. Untargeted metabolomics is sensitive enough to detect subtle metabolomic changes when functional cellular analysis shows no significant differences. Overall, our study reveals the underlying metabolic mechanism of NPs-induced intestinal organoid toxicity and provides new insights into the possible adverse consequences of NPs. [Display omitted] •The metabolic toxicity of PS-NPs, PMMA-NPs, and PTFE-NPs can be predicted using non-targeted metabolomics.•Intestinal organoids are powerful models for assessing the metabolic toxicity of nanoplastics in vitro.•Different types of nanoplastics cause different metabolic toxicity mechanisms in intestinal organoids.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38159744</pmid><doi>10.1016/j.scitotenv.2023.169606</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2024-02, Vol.913, p.169606-169606, Article 169606
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_2909086256
source ScienceDirect Freedom Collection
subjects autophagy
environment
fatty acid metabolism
HCT116 cells
Intestinal organoids
intestines
membrane potential
metabolites
Metabolomics
mice
mitochondrial membrane
Nanoplastic particles
nanoplastics
Nanotoxicity
necroptosis
organoids
oxidative stress
pollution
safety assessment
species
toxicity
title Predictive metabolomic signatures for safety assessment of three plastic nanoparticles using intestinal organoids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20metabolomic%20signatures%20for%20safety%20assessment%20of%20three%20plastic%20nanoparticles%20using%20intestinal%20organoids&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Xuan,%20Lihui&rft.date=2024-02-25&rft.volume=913&rft.spage=169606&rft.epage=169606&rft.pages=169606-169606&rft.artnum=169606&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2023.169606&rft_dat=%3Cproquest_cross%3E2909086256%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-5214efefcbe1fde19e757555bf9564047665f19c012d535043d8db3a07ff1cfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2909086256&rft_id=info:pmid/38159744&rfr_iscdi=true