Loading…
Generalization of One-Center Nonorthogonal Configuration Interaction Singles to Open-Shell Singlet Reference States: Theory and Application to Valence-Core Pump-Probe States in Acetylacetone
We formulate a one-center nonorthogonal configuration interaction singles (1C-NOCIS) theory for the computation of core excited states of an initial singlet state with two unpaired electrons. This model, which we refer to as 1C-NOCIS two-electron open-shell (2eOS), is appropriate for computing the K...
Saved in:
Published in: | Journal of chemical theory and computation 2024-01, Vol.20 (2), p.752-766 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We formulate a one-center nonorthogonal configuration interaction singles (1C-NOCIS) theory for the computation of core excited states of an initial singlet state with two unpaired electrons. This model, which we refer to as 1C-NOCIS two-electron open-shell (2eOS), is appropriate for computing the K-edge near-edge X-ray absorption spectra (NEXAS) of the valence excited states of closed-shell molecules relevant to pump-probe time-resolved (TR) NEXAS experiments. With the inclusion of core-hole relaxation effects and explicit spin adaptation, 1C-NOCIS 2eOS requires mild shifts to match experiment, is free of artifacts due to spin contamination, and can capture the high-energy region of the spectrum beyond the transitions into the singly occupied molecular orbitals (SOMOs). Calculations on water and thymine illustrate the different key features of excited-state NEXAS, namely, the core-to-SOMO transitions as well as shifts and spin-splittings in the transitions analogous to those of the ground state. Simulations of the TR-NEXAS of acetylacetone after excitation to its π → π* singlet excited state at the carbon K-edge, an experiment carried out recently, showcase the ability of 1C-NOCIS 2eOS to efficiently simulate NEXAS based on nonadiabatic molecular dynamics simulations. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.3c01139 |