Loading…
Verification of computer users using keystroke dynamics
This paper presents techniques to verify the identity of computer users using the keystroke dynamics of computer user's login string as characteristic patterns using pattern recognition and neural network techniques. This work is a continuation of our previous work where only interkey times wer...
Saved in:
Published in: | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics man and cybernetics. Part B, Cybernetics, 1997-04, Vol.27 (2), p.261-269 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents techniques to verify the identity of computer users using the keystroke dynamics of computer user's login string as characteristic patterns using pattern recognition and neural network techniques. This work is a continuation of our previous work where only interkey times were used as features for identifying computer users. In this work we used the key hold times for classification and then compared the performance with the former interkey time-based technique. Then we use the combined interkey and hold times for the identification process. We applied several neural network and pattern recognition algorithms for verifying computer users as they type their password phrases. It was found that hold times are more effective than interkey times and the best identification performance was achieved by using both time measurements. An identification accuracy of 100% was achieved when the combined hold and intekey time-based approach were considered as features using the fuzzy ARTMAP, radial basis function networks (RBFN), and learning vector quantization (LVQ) neural network paradigms. Other neural network and classical pattern algorithms such as backpropagation with a sigmoid transfer function (BP, Sigm), hybrid sum-of-products (HSOP), sum-of-products (SOP), potential function and Bayes' rule algorithms gave moderate performance. |
---|---|
ISSN: | 1083-4419 1941-0492 |
DOI: | 10.1109/3477.558812 |