Loading…

Chemical degradation of crosslinked ethylene-propylene-diene rubber in an acidic environment. Part II. Effect of peroxide crosslinking in the presence of a coagent

An investigation on the time-dependent chemical degradation of ethylene-propylene diene rubber containing 5-ethylidene-2-norbornene as diene cured by peroxide crosslinking in the presence of a coagent in an acidic environment (20% Cr/H 2SO 4) has been made. Two types of rubber, with comparable monom...

Full description

Saved in:
Bibliographic Details
Published in:Polymer degradation and stability 2006, Vol.91 (1), p.81-93
Main Authors: Mitra, Susanta, Ghanbari-Siahkali, Afshin, Kingshott, Peter, Rehmeier, Helle Kem, Abildgaard, Hans, Almdal, Kristoffer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An investigation on the time-dependent chemical degradation of ethylene-propylene diene rubber containing 5-ethylidene-2-norbornene as diene cured by peroxide crosslinking in the presence of a coagent in an acidic environment (20% Cr/H 2SO 4) has been made. Two types of rubber, with comparable monomer composition, but having significant differences in molar mass and levels of long chain branching were tested. Dicumyl peroxide and triallylcyanurate under similar conditions were used for curing the rubbers. The molecular mechanisms of chemical degradation at the surface were studied using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, which demonstrate that several oxygenated species evolve during exposure. The primary process of degradation is hydrolytic attack on the crosslink sites, which is manifested by a decrease in crosslink density. The surface degradation is found to be strong enough to alter the bulk mechanical properties as observed by the change in retention in tensile strength, elongation at break, modulus at 50% elongation and, the change in micro-hardness. Retention in modulus at 50% elongation is found to follow a negative linear correlation with decrease in crosslink density. With higher molar mass and level of long chain branching more crosslinking occurs and thus comparatively more hydrolytic attack ensues. Scanning electron microscopy shows that the surface topography is significantly altered upon exposure and supports the notion of the dependence of degradation on the crosslinking density of the samples. Importantly, the coagent used in this study is shown to enhance the chemical degradation through formation of weaker sites for hydrolysis. The results also show that upon prolonged exposure the resulting oxygenated species tend to combine with each other.
ISSN:0141-3910
1873-2321
DOI:10.1016/j.polymdegradstab.2005.04.031