Loading…

Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude

Production rates of cosmogenic nuclides at the earth's surface are controlled by the intensity of energetic cosmic-ray nucleons, which changes rapidly with elevation. An incomplete knowledge of how nucleon fluxes vary with elevation remains a major obstacle to utilizing cosmogenic nuclides as g...

Full description

Saved in:
Bibliographic Details
Published in:Earth and planetary science letters 2006-06, Vol.246 (3), p.265-276
Main Authors: Desilets, Darin, Zreda, Marek, Prabu, T.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Production rates of cosmogenic nuclides at the earth's surface are controlled by the intensity of energetic cosmic-ray nucleons, which changes rapidly with elevation. An incomplete knowledge of how nucleon fluxes vary with elevation remains a major obstacle to utilizing cosmogenic nuclides as geochronometers in applications requiring highly accurate ages. One problem is that attenuation characteristics depend on nucleon energy. Measurements of high-energy (> 50 MeV) nucleon fluxes tend to give shorter attenuation lengths than low-energy (< 1 MeV) fluxes, but these differences are not well characterized due to a lack of data at lower energies. Another problem is that the atmospheric attenuation length for nucleon fluxes varies with the geomagnetic cutoff rigidity (a parameter related to geomagnetic latitude), R C, and that there has been an incomplete mapping of nucleon fluxes at high R C (low geomagnetic latitude). We report new measurements of nucleon fluxes from altitude transects in Hawaii ( R C = 12.8 GV) and Bangalore, India ( R C = 17.3 GV). Our measurements in Hawaii of low-energy neutrons (median energy 1 eV) and energetic nucleons (median energy 140 MeV) confirm that nucleon scaling functions are energy-dependent in the range of energies at which cosmogenic nuclides are produced. Our measurements in southern India extend our previously reported scaling model for spallation reactions [D. Desilets, M. Zreda, Spatial and temporal distribution of secondary cosmic-ray nucleon intensity and applications to in situ cosmogenic dating. Earth Planet. Sci. Lett. 206 (2003) 21–42] from R C = 13.3 GV to R C = 17.3 GV, nearly the highest cutoff rigidity on earth. The anomalously high cutoff rigidity over India provides a geomagnetic shielding condition that is effectively the same as would be observed at the geomagnetic equator in a dipole field with an intensity 1.2 times the modern value. This makes it possible to scale low-latitude production rates to paleomagnetic fields that are stronger than the present dipole field.
ISSN:0012-821X
1385-013X
DOI:10.1016/j.epsl.2006.03.051