Loading…
Study on the improvement of complexation efficiency and anti-digestibility of phenolic acids based on electrospun starch fibers
Phenolic acids can be encapsulated by starch electrospun fibers, and the structural and functional properties of the electrospun fiber are affected by the chemical structure of phenolic acid. In this study, five phenolic acids (protocatechuic acid (PA), p-hydroxybenzoic acid (PHBA), p-coumaric acid...
Saved in:
Published in: | Food research international 2024-02, Vol.177, p.113921-113921, Article 113921 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phenolic acids can be encapsulated by starch electrospun fibers, and the structural and functional properties of the electrospun fiber are affected by the chemical structure of phenolic acid. In this study, five phenolic acids (protocatechuic acid (PA), p-hydroxybenzoic acid (PHBA), p-coumaric acid (PCA), ferulic acid (FA), and caffeic acid (CA)) were chosen to prepare electrospun fibers with high amylose corn starch (HACS) at different voltages. Morphology and complexation efficiency results revealed that the electrospun fibers prepared at 21.0 kV were smooth and continuous with high encapsulation efficiency (EE) and loading efficiency (LE). The chemical structure of phenolic acid played an important role in the structure and properties of electrospun fibers by influencing the complexation of HACS with phenolic acids and the inhibitory effect of amylase. As a result, electrospun fibers containing HACS-CA inclusion complex had higher relative crystallinity (25.47 %), higher thermal degradation temperatures (356.17 °C), and the strongest resistance to digestion (starch digestive ratio = 22.98 %). It is evident that electrospun fibers containing HACS-phenolic acid inclusion complexes not only achieve high phenolic acid complexation efficiency, but also resist the effects of the gastric and small intestinal environment on phenolic acids, thereby improving the bioaccessibility of phenolic acids. |
---|---|
ISSN: | 0963-9969 1873-7145 |
DOI: | 10.1016/j.foodres.2023.113921 |