Loading…
Microscopy of Woven and Nonwoven Face Covering Materials: Implications for Particle Filtration
A suite of natural, synthetic, and mixed synthetic-natural woven fabrics, along with nonwoven filtration layers from a surgical mask and an N95 respirator, was examined using visible light microscopy, scanning electron microscopy, and micro-X-ray computed tomography (µXCT) to determine the fiber dia...
Saved in:
Published in: | Microscopy and microanalysis 2024-03, Vol.30 (1), p.27-40 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A suite of natural, synthetic, and mixed synthetic-natural woven fabrics, along with nonwoven filtration layers from a surgical mask and an N95 respirator, was examined using visible light microscopy, scanning electron microscopy, and micro-X-ray computed tomography (µXCT) to determine the fiber diameter distribution, fabric thickness, and the volume of solid space of the fabrics. Nonwoven materials exhibit a positively skewed distribution of fiber diameters with a mean value of ≈3 μm, whereas woven fabrics exhibit a normal distribution of diameters with mean values roughly five times larger (>15 μm). The mean thickness of the N95 filtration material is 1093 μm and is greater than that of the woven fabrics that span from 420 to 650 μm. A new procedure for measuring the thickness of flannel fabrics is proposed that accounts for raised fibers. µXCT allowed for a quantitative nondestructive approach to measure fabric porosity as well as the surface area/volume. Cotton flannel showed the largest mean isotropy of any fabric, though fiber order within the weave is poorly represented in the surface electron images. Surface fabric isotropy and surface area/volume ratios are proposed as useful microstructural quantities to consider for future particle filtration modeling efforts of woven materials. |
---|---|
ISSN: | 1431-9276 1435-8115 |
DOI: | 10.1093/micmic/ozad138 |