Loading…
Almost Global Existence for Some Hamiltonian PDEs with Small Cauchy Data on General Tori
In this paper we prove a result of almost global existence for some abstract nonlinear PDEs on flat tori and apply it to some concrete equations, namely a nonlinear Schrödinger equation with a convolution potential, a beam equation and a quantum hydrodinamical equation. We also apply it to the stabi...
Saved in:
Published in: | Communications in mathematical physics 2024, Vol.405 (1), p.15-15, Article 15 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we prove a result of almost global existence for some abstract nonlinear PDEs on flat tori and apply it to some concrete equations, namely a nonlinear Schrödinger equation with a convolution potential, a beam equation and a quantum hydrodinamical equation. We also apply it to the stability of plane waves in NLS. The main point is that the abstract result is based on a nonresonance condition much weaker than the usual ones, which rely on the celebrated Bourgain’s Lemma which provides a partition of the “resonant sites” of the Laplace operator on irrational tori. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-023-04899-z |