Loading…

Tannic acid alleviates ETEC K88‐induced intestinal damage through regulating the p62‐keap1‐Nrf2 and TLR4‐NF‐κB‐NLRP3 pathway in IPEC‐J2 cells

BACKGROUND Tannic acid (TA), a naturally occurring polyphenol, has shown diverse potential in preventing intestinal damage in piglet diarrhea induced by Enterotoxigenic Escherichia coli (ETEC) K88. However, the protective effect of TA on ETEC k88 infection‐induced post‐weaning diarrhea and its poten...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the science of food and agriculture 2024-07, Vol.104 (9), p.5186-5196
Main Authors: Liu, Wenhui, Guo, Kangkang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3163-6ed2ecda9a3c04f587ea321c6bb8fc75c726fabf94dc7f77bec31084d58c2e833
container_end_page 5196
container_issue 9
container_start_page 5186
container_title Journal of the science of food and agriculture
container_volume 104
creator Liu, Wenhui
Guo, Kangkang
description BACKGROUND Tannic acid (TA), a naturally occurring polyphenol, has shown diverse potential in preventing intestinal damage in piglet diarrhea induced by Enterotoxigenic Escherichia coli (ETEC) K88. However, the protective effect of TA on ETEC k88 infection‐induced post‐weaning diarrhea and its potential mechanism has not been well elucidated. Therefore, an animal trial was carried out to investigate the effects of dietary supplementation with TA on the intestinal diarrhea of weaned piglets challenged with ETEC K88. In addition, porcine intestinal epithelial cells were used as an in vitro model to explore the mechanism through which TA alleviates intestinal oxidative damage and inflammation. RESULTS The results indicated that TA supplementation (2 and 4 g kg−1) reduced diarrhea rate, enzyme activity (diamine oxidase [DAO] and Malondialdehyde [MAD]) and serum inflammatory cytokines concentration (TNF‐α and IL‐1β) (P 
doi_str_mv 10.1002/jsfa.13343
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2920187275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067630351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3163-6ed2ecda9a3c04f587ea321c6bb8fc75c726fabf94dc7f77bec31084d58c2e833</originalsourceid><addsrcrecordid>eNp9kU9uEzEUxi0EoqGw4QDIEhuENMV_ZmzPskQJtI1oVcLaemN7EofJzGBnqLLjCByAk3AIDsFJ8DSlCxZs_Oz3_d4n2x9Czyk5oYSwN5tYwwnlPOcP0ISSUmaEUPIQTZLIsoLm7Ag9iXFDCClLIR6jI66YUjKXE_RjCW3rDQbjLYamcV897FzEs-Vsii-U-v3tu2_tYJzFvk3CzrfQYAtbWDm8W4duWK1xcKuhgSStUsvhXrA09tlBT1P9EGqGobV4ubjOx_M8Lb9-vh23i-srjnvYrW9gn_zx2dVsmvrnDBvXNPEpelRDE92zu3qMPs1ny-n7bHH57mx6usgMp4JnwlnmjIUSuCF5XSjpgDNqRFWp2sjCSCZqqOoyt0bWUlYuzRGV20IZ5hTnx-jVwbcP3ZchPVJvfRxvAK3rhqhZyQhVkskioS__QTfdENKfRM2JkIITXtBEvT5QJnQxBlfrPvgthL2mRI-Z6TEzfZtZgl_cWQ7V1tl79G9ICaAH4MY3bv8fK33-cX56MP0DUP-nlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067630351</pqid></control><display><type>article</type><title>Tannic acid alleviates ETEC K88‐induced intestinal damage through regulating the p62‐keap1‐Nrf2 and TLR4‐NF‐κB‐NLRP3 pathway in IPEC‐J2 cells</title><source>Wiley</source><creator>Liu, Wenhui ; Guo, Kangkang</creator><creatorcontrib>Liu, Wenhui ; Guo, Kangkang</creatorcontrib><description>BACKGROUND Tannic acid (TA), a naturally occurring polyphenol, has shown diverse potential in preventing intestinal damage in piglet diarrhea induced by Enterotoxigenic Escherichia coli (ETEC) K88. However, the protective effect of TA on ETEC k88 infection‐induced post‐weaning diarrhea and its potential mechanism has not been well elucidated. Therefore, an animal trial was carried out to investigate the effects of dietary supplementation with TA on the intestinal diarrhea of weaned piglets challenged with ETEC K88. In addition, porcine intestinal epithelial cells were used as an in vitro model to explore the mechanism through which TA alleviates intestinal oxidative damage and inflammation. RESULTS The results indicated that TA supplementation (2 and 4 g kg−1) reduced diarrhea rate, enzyme activity (diamine oxidase [DAO] and Malondialdehyde [MAD]) and serum inflammatory cytokines concentration (TNF‐α and IL‐1β) (P &lt; 0.05) compared to the Infection group (IG), group in vivo. In vitro, TA treatment effectively alleviated ETEC‐induced cytotoxicity, increased the expression of ZO‐1, occludin and claudin‐1 at both mRNA and protein levels. Moreover, TA pre‐treatment increased the activity of antioxidant enzymes (such as T‐SOD) and decreased serum cytokine levels (TNF‐α and IL‐1β). Furthermore, TA increased cellular antioxidant capacity by activating the Nrf2 signaling pathway and decreased inflammatory response by down‐regulating the expression of TLR4, MyD88, NF‐kB and NLRP3. CONCLUSION The present study showed that TA reduced the diarrhea rate of weaned piglets by restoring the intestinal mucosal mechanical barrier function, alleviating oxidative stress and inflammation. The underlying mechanism was achieved by modulating the p62‐keap1‐Nrf2 and TLR4‐NF‐κB‐NLRP3 pathway. © 2024 Society of Chemical Industry.</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.13343</identifier><identifier>PMID: 38288747</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animals ; Antioxidants ; Barriers ; Biocompatibility ; Cell Line ; Cytokines ; Cytotoxicity ; Damage prevention ; Diamines ; Diarrhea ; Diarrhea - drug therapy ; Diarrhea - microbiology ; Dietary supplements ; E coli ; Enterotoxigenic Escherichia coli ; Enzymatic activity ; Enzyme activity ; Epithelial cells ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Epithelium ; Escherichia coli Infections - drug therapy ; Escherichia coli Infections - microbiology ; ETEC K88 ; Immunoglobulins ; Inflammation ; Inflammatory response ; Intestinal Mucosa - drug effects ; Intestinal Mucosa - metabolism ; Intestinal Mucosa - microbiology ; Intestine ; Intestines - drug effects ; Intestines - microbiology ; Kelch-Like ECH-Associated Protein 1 - genetics ; Kelch-Like ECH-Associated Protein 1 - metabolism ; Mechanical properties ; mRNA ; MyD88 protein ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; NF-kappa B - genetics ; NF-kappa B - metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein - metabolism ; Oxidative stress ; p62‐Nrf2‐keap1 ; Polyphenols ; post‐weaning diarrhea ; Signal transduction ; Signal Transduction - drug effects ; Swine ; Swine Diseases - drug therapy ; Swine Diseases - metabolism ; Swine Diseases - microbiology ; Tannic acid ; Tannins - pharmacology ; TLR4 protein ; TLR4‐NF‐κB‐NLRP3 ; Toll-Like Receptor 4 - genetics ; Toll-Like Receptor 4 - metabolism ; Toll-like receptors ; Weaning</subject><ispartof>Journal of the science of food and agriculture, 2024-07, Vol.104 (9), p.5186-5196</ispartof><rights>2024 Society of Chemical Industry.</rights><rights>2024 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3163-6ed2ecda9a3c04f587ea321c6bb8fc75c726fabf94dc7f77bec31084d58c2e833</cites><orcidid>0009-0002-2350-4247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38288747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Wenhui</creatorcontrib><creatorcontrib>Guo, Kangkang</creatorcontrib><title>Tannic acid alleviates ETEC K88‐induced intestinal damage through regulating the p62‐keap1‐Nrf2 and TLR4‐NF‐κB‐NLRP3 pathway in IPEC‐J2 cells</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND Tannic acid (TA), a naturally occurring polyphenol, has shown diverse potential in preventing intestinal damage in piglet diarrhea induced by Enterotoxigenic Escherichia coli (ETEC) K88. However, the protective effect of TA on ETEC k88 infection‐induced post‐weaning diarrhea and its potential mechanism has not been well elucidated. Therefore, an animal trial was carried out to investigate the effects of dietary supplementation with TA on the intestinal diarrhea of weaned piglets challenged with ETEC K88. In addition, porcine intestinal epithelial cells were used as an in vitro model to explore the mechanism through which TA alleviates intestinal oxidative damage and inflammation. RESULTS The results indicated that TA supplementation (2 and 4 g kg−1) reduced diarrhea rate, enzyme activity (diamine oxidase [DAO] and Malondialdehyde [MAD]) and serum inflammatory cytokines concentration (TNF‐α and IL‐1β) (P &lt; 0.05) compared to the Infection group (IG), group in vivo. In vitro, TA treatment effectively alleviated ETEC‐induced cytotoxicity, increased the expression of ZO‐1, occludin and claudin‐1 at both mRNA and protein levels. Moreover, TA pre‐treatment increased the activity of antioxidant enzymes (such as T‐SOD) and decreased serum cytokine levels (TNF‐α and IL‐1β). Furthermore, TA increased cellular antioxidant capacity by activating the Nrf2 signaling pathway and decreased inflammatory response by down‐regulating the expression of TLR4, MyD88, NF‐kB and NLRP3. CONCLUSION The present study showed that TA reduced the diarrhea rate of weaned piglets by restoring the intestinal mucosal mechanical barrier function, alleviating oxidative stress and inflammation. The underlying mechanism was achieved by modulating the p62‐keap1‐Nrf2 and TLR4‐NF‐κB‐NLRP3 pathway. © 2024 Society of Chemical Industry.</description><subject>Animals</subject><subject>Antioxidants</subject><subject>Barriers</subject><subject>Biocompatibility</subject><subject>Cell Line</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Damage prevention</subject><subject>Diamines</subject><subject>Diarrhea</subject><subject>Diarrhea - drug therapy</subject><subject>Diarrhea - microbiology</subject><subject>Dietary supplements</subject><subject>E coli</subject><subject>Enterotoxigenic Escherichia coli</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelium</subject><subject>Escherichia coli Infections - drug therapy</subject><subject>Escherichia coli Infections - microbiology</subject><subject>ETEC K88</subject><subject>Immunoglobulins</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Intestinal Mucosa - drug effects</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestinal Mucosa - microbiology</subject><subject>Intestine</subject><subject>Intestines - drug effects</subject><subject>Intestines - microbiology</subject><subject>Kelch-Like ECH-Associated Protein 1 - genetics</subject><subject>Kelch-Like ECH-Associated Protein 1 - metabolism</subject><subject>Mechanical properties</subject><subject>mRNA</subject><subject>MyD88 protein</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>NF-kappa B - genetics</subject><subject>NF-kappa B - metabolism</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</subject><subject>Oxidative stress</subject><subject>p62‐Nrf2‐keap1</subject><subject>Polyphenols</subject><subject>post‐weaning diarrhea</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Swine</subject><subject>Swine Diseases - drug therapy</subject><subject>Swine Diseases - metabolism</subject><subject>Swine Diseases - microbiology</subject><subject>Tannic acid</subject><subject>Tannins - pharmacology</subject><subject>TLR4 protein</subject><subject>TLR4‐NF‐κB‐NLRP3</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>Toll-like receptors</subject><subject>Weaning</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU9uEzEUxi0EoqGw4QDIEhuENMV_ZmzPskQJtI1oVcLaemN7EofJzGBnqLLjCByAk3AIDsFJ8DSlCxZs_Oz3_d4n2x9Czyk5oYSwN5tYwwnlPOcP0ISSUmaEUPIQTZLIsoLm7Ag9iXFDCClLIR6jI66YUjKXE_RjCW3rDQbjLYamcV897FzEs-Vsii-U-v3tu2_tYJzFvk3CzrfQYAtbWDm8W4duWK1xcKuhgSStUsvhXrA09tlBT1P9EGqGobV4ubjOx_M8Lb9-vh23i-srjnvYrW9gn_zx2dVsmvrnDBvXNPEpelRDE92zu3qMPs1ny-n7bHH57mx6usgMp4JnwlnmjIUSuCF5XSjpgDNqRFWp2sjCSCZqqOoyt0bWUlYuzRGV20IZ5hTnx-jVwbcP3ZchPVJvfRxvAK3rhqhZyQhVkskioS__QTfdENKfRM2JkIITXtBEvT5QJnQxBlfrPvgthL2mRI-Z6TEzfZtZgl_cWQ7V1tl79G9ICaAH4MY3bv8fK33-cX56MP0DUP-nlg</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Liu, Wenhui</creator><creator>Guo, Kangkang</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-2350-4247</orcidid></search><sort><creationdate>202407</creationdate><title>Tannic acid alleviates ETEC K88‐induced intestinal damage through regulating the p62‐keap1‐Nrf2 and TLR4‐NF‐κB‐NLRP3 pathway in IPEC‐J2 cells</title><author>Liu, Wenhui ; Guo, Kangkang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3163-6ed2ecda9a3c04f587ea321c6bb8fc75c726fabf94dc7f77bec31084d58c2e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antioxidants</topic><topic>Barriers</topic><topic>Biocompatibility</topic><topic>Cell Line</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Damage prevention</topic><topic>Diamines</topic><topic>Diarrhea</topic><topic>Diarrhea - drug therapy</topic><topic>Diarrhea - microbiology</topic><topic>Dietary supplements</topic><topic>E coli</topic><topic>Enterotoxigenic Escherichia coli</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelium</topic><topic>Escherichia coli Infections - drug therapy</topic><topic>Escherichia coli Infections - microbiology</topic><topic>ETEC K88</topic><topic>Immunoglobulins</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Intestinal Mucosa - drug effects</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestinal Mucosa - microbiology</topic><topic>Intestine</topic><topic>Intestines - drug effects</topic><topic>Intestines - microbiology</topic><topic>Kelch-Like ECH-Associated Protein 1 - genetics</topic><topic>Kelch-Like ECH-Associated Protein 1 - metabolism</topic><topic>Mechanical properties</topic><topic>mRNA</topic><topic>MyD88 protein</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>NF-kappa B - genetics</topic><topic>NF-kappa B - metabolism</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</topic><topic>Oxidative stress</topic><topic>p62‐Nrf2‐keap1</topic><topic>Polyphenols</topic><topic>post‐weaning diarrhea</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Swine</topic><topic>Swine Diseases - drug therapy</topic><topic>Swine Diseases - metabolism</topic><topic>Swine Diseases - microbiology</topic><topic>Tannic acid</topic><topic>Tannins - pharmacology</topic><topic>TLR4 protein</topic><topic>TLR4‐NF‐κB‐NLRP3</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>Toll-like receptors</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenhui</creatorcontrib><creatorcontrib>Guo, Kangkang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenhui</au><au>Guo, Kangkang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tannic acid alleviates ETEC K88‐induced intestinal damage through regulating the p62‐keap1‐Nrf2 and TLR4‐NF‐κB‐NLRP3 pathway in IPEC‐J2 cells</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2024-07</date><risdate>2024</risdate><volume>104</volume><issue>9</issue><spage>5186</spage><epage>5196</epage><pages>5186-5196</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND Tannic acid (TA), a naturally occurring polyphenol, has shown diverse potential in preventing intestinal damage in piglet diarrhea induced by Enterotoxigenic Escherichia coli (ETEC) K88. However, the protective effect of TA on ETEC k88 infection‐induced post‐weaning diarrhea and its potential mechanism has not been well elucidated. Therefore, an animal trial was carried out to investigate the effects of dietary supplementation with TA on the intestinal diarrhea of weaned piglets challenged with ETEC K88. In addition, porcine intestinal epithelial cells were used as an in vitro model to explore the mechanism through which TA alleviates intestinal oxidative damage and inflammation. RESULTS The results indicated that TA supplementation (2 and 4 g kg−1) reduced diarrhea rate, enzyme activity (diamine oxidase [DAO] and Malondialdehyde [MAD]) and serum inflammatory cytokines concentration (TNF‐α and IL‐1β) (P &lt; 0.05) compared to the Infection group (IG), group in vivo. In vitro, TA treatment effectively alleviated ETEC‐induced cytotoxicity, increased the expression of ZO‐1, occludin and claudin‐1 at both mRNA and protein levels. Moreover, TA pre‐treatment increased the activity of antioxidant enzymes (such as T‐SOD) and decreased serum cytokine levels (TNF‐α and IL‐1β). Furthermore, TA increased cellular antioxidant capacity by activating the Nrf2 signaling pathway and decreased inflammatory response by down‐regulating the expression of TLR4, MyD88, NF‐kB and NLRP3. CONCLUSION The present study showed that TA reduced the diarrhea rate of weaned piglets by restoring the intestinal mucosal mechanical barrier function, alleviating oxidative stress and inflammation. The underlying mechanism was achieved by modulating the p62‐keap1‐Nrf2 and TLR4‐NF‐κB‐NLRP3 pathway. © 2024 Society of Chemical Industry.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>38288747</pmid><doi>10.1002/jsfa.13343</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0002-2350-4247</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2024-07, Vol.104 (9), p.5186-5196
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_2920187275
source Wiley
subjects Animals
Antioxidants
Barriers
Biocompatibility
Cell Line
Cytokines
Cytotoxicity
Damage prevention
Diamines
Diarrhea
Diarrhea - drug therapy
Diarrhea - microbiology
Dietary supplements
E coli
Enterotoxigenic Escherichia coli
Enzymatic activity
Enzyme activity
Epithelial cells
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Epithelium
Escherichia coli Infections - drug therapy
Escherichia coli Infections - microbiology
ETEC K88
Immunoglobulins
Inflammation
Inflammatory response
Intestinal Mucosa - drug effects
Intestinal Mucosa - metabolism
Intestinal Mucosa - microbiology
Intestine
Intestines - drug effects
Intestines - microbiology
Kelch-Like ECH-Associated Protein 1 - genetics
Kelch-Like ECH-Associated Protein 1 - metabolism
Mechanical properties
mRNA
MyD88 protein
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
NF-kappa B - genetics
NF-kappa B - metabolism
NLR Family, Pyrin Domain-Containing 3 Protein - metabolism
Oxidative stress
p62‐Nrf2‐keap1
Polyphenols
post‐weaning diarrhea
Signal transduction
Signal Transduction - drug effects
Swine
Swine Diseases - drug therapy
Swine Diseases - metabolism
Swine Diseases - microbiology
Tannic acid
Tannins - pharmacology
TLR4 protein
TLR4‐NF‐κB‐NLRP3
Toll-Like Receptor 4 - genetics
Toll-Like Receptor 4 - metabolism
Toll-like receptors
Weaning
title Tannic acid alleviates ETEC K88‐induced intestinal damage through regulating the p62‐keap1‐Nrf2 and TLR4‐NF‐κB‐NLRP3 pathway in IPEC‐J2 cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tannic%20acid%20alleviates%20ETEC%20K88%E2%80%90induced%20intestinal%20damage%20through%20regulating%20the%20p62%E2%80%90keap1%E2%80%90Nrf2%20and%20TLR4%E2%80%90NF%E2%80%90%CE%BAB%E2%80%90NLRP3%20pathway%20in%20IPEC%E2%80%90J2%20cells&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Liu,%20Wenhui&rft.date=2024-07&rft.volume=104&rft.issue=9&rft.spage=5186&rft.epage=5196&rft.pages=5186-5196&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.13343&rft_dat=%3Cproquest_cross%3E3067630351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3163-6ed2ecda9a3c04f587ea321c6bb8fc75c726fabf94dc7f77bec31084d58c2e833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067630351&rft_id=info:pmid/38288747&rfr_iscdi=true