Loading…

The Effects of Excipients on Freeze-dried Monoclonal Antibody Formulation Degradation and Sub-Visible Particle Formation during Shaking

Purposes We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stres...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutical research 2024-02, Vol.41 (2), p.321-334
Main Authors: Jin, Meng-Jia, Ge, Xin-Zhe, Huang, Qiong, Liu, Jia-Wei, Ingle, Rahul G., Gao, Dong, Fang, Wei-Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purposes We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stress on protein degradation and sub-visible particle (SbVP) formation in freeze-dried mAb formulations, and to analyze the factors influencing protein degradation during production and transportation. Methods The aggregation behavior of mAb-X formulations during production and transportation was simulated by shaking at a rate of 300 rpm at 25°C for 24 h. The contents of particles and monomers were analyzed by micro-flow imaging, dynamic light scattering, size exclusion chromatography, and ultraviolet − visible (UV–Vis) spectroscopy to compare the protective effects of excipients on the aggregation of mAb-X. Results Shaking stress could cause protein degradation in freeze-dried mAb-X formulations, while surfactant, appropriate pH, polyol mannitol, and high protein concentration could impact SbVP generation. Water content had little effect on freeze-dried protein degradation during shaking, as far as the water content was controlled in the acceptable range as recommended by mainstream pharmacopoeias (i.e., less than 3%). Conclusions Shaking stress can reduce the physical stability of freeze-dried mAb formulations, and the addition of surfactants, polyol mannitol, and a high protein concentration have protective effects against the degradation of model mAb formulations induced by shaking stress. The experimental results provide new insight for the development of freeze-dried mAb formulations.
ISSN:0724-8741
1573-904X
DOI:10.1007/s11095-024-03657-7