Loading…

Algorithm-Dependent Generalization of AUPRC Optimization: Theory and Algorithm

Stochastic optimization of the Area Under the Precision-Recall Curve (AUPRC) is a crucial problem for machine learning. Despite extensive studies on AUPRC optimization, generalization is still an open problem. In this work, we present the first trial in the algorithm-dependent generalization of stoc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2024-07, Vol.46 (7), p.5062-5079
Main Authors: Wen, Peisong, Xu, Qianqian, Yang, Zhiyong, He, Yuan, Huang, Qingming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stochastic optimization of the Area Under the Precision-Recall Curve (AUPRC) is a crucial problem for machine learning. Despite extensive studies on AUPRC optimization, generalization is still an open problem. In this work, we present the first trial in the algorithm-dependent generalization of stochastic AUPRC optimization. The obstacles to our destination are three-fold. First, according to the consistency analysis, the majority of existing stochastic estimators are biased with biased sampling strategies. To address this issue, we propose a stochastic estimator with sampling-rate-invariant consistency and reduce the consistency error by estimating the full-batch scores with score memory. Second, standard techniques for algorithm-dependent generalization analysis cannot be directly applied to listwise losses. To fill this gap, we extend the model stability from instance-wise losses to listwise losses. Third, AUPRC optimization involves a compositional optimization problem, which brings complicated computations. In this work, we propose to reduce the computational complexity by matrix spectral decomposition. Based on these techniques, we derive the first algorithm-dependent generalization bound for AUPRC optimization. Motivated by theoretical results, we propose a generalization-induced learning framework, which improves the AUPRC generalization by equivalently increasing the batch size and the number of valid training examples. Practically, experiments on image retrieval and long-tailed classification speak to the effectiveness and soundness of our framework.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2024.3361861