Loading…

Decomposition of Toluene and Acetone in Packed Dielectric Barrier Discharge Reactors

The influences of TiO2 catalytic material and glass pellet packing on the decomposition efficiency of toluene and acetone in air by dielectric barrier discharge (DBD) reactors were experimentally investigated in this study. The effects of both packing materials on the formation of byproducts such as...

Full description

Saved in:
Bibliographic Details
Published in:Plasma chemistry and plasma processing 2005-06, Vol.25 (3), p.227-243
Main Authors: Chang, Chung-Liang, Lin, Tser-Sheng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influences of TiO2 catalytic material and glass pellet packing on the decomposition efficiency of toluene and acetone in air by dielectric barrier discharge (DBD) reactors were experimentally investigated in this study. The effects of both packing materials on the formation of byproducts such as CO and CO2 were also evaluated. Experimental results indicate that the introduction of glass materials into the plasma zone of a wire-tube reactor would improve the decomposition efficiency of toluene and acetone compared to a non-packed reactor. The apparent decomposition rate constant of a glass packed-bed reactor was 4.5-4.8 times greater than that of a nonpacked reactor. The results also indicate that the decomposition rate constant of toluene was approximately 2.6 times higher than that of acetone no matter which type reactor was utilized. The application of TiO2 coated pellets in DBD reactors will enforce the hydrocarbon byproducts to further be oxidized to CO2, notwithstanding, it will not significantly improve the performance of the reactors in the decomposition of toluene and acetone, and in the formation of CO. The results show that the best selectivity of CO2 for acetone decomposition in a TiO2 coated pellets packed-bed reactor was approximately 40% higher than that in a glass packed-bed reactor.
ISSN:0272-4324
1572-8986
DOI:10.1007/s11090-004-3034-x