Loading…
On-Demand Optimization of Colorimetric Gas Sensors Using a Knowledge-Aware Algorithm-Driven Robotic Experimental Platform
Synthesizing the best material globally is challenging; it needs to know what and how much the best ingredient composition should be for satisfying multiple figures of merit simultaneously. Traditional one-variable-at-a-time methods are inefficient; the design-build-test-learn (DBTL) method could ac...
Saved in:
Published in: | ACS sensors 2024-02, Vol.9 (2), p.745-752 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Synthesizing the best material globally is challenging; it needs to know what and how much the best ingredient composition should be for satisfying multiple figures of merit simultaneously. Traditional one-variable-at-a-time methods are inefficient; the design-build-test-learn (DBTL) method could achieve the optimal composition from only a handful of ingredients. A vast design space needs to be explored to discover the possible global optimal composition for on-demand materials synthesis. This research developed a hypothesis-guided DBTL (H-DBTL) method combined with robots to expand the dimensions of the search space, thereby achieving a better global optimal performance. First, this study engineered the search space with knowledge-aware chemical descriptors and customized multiobjective functions to fulfill on-demand research objectives. To verify this concept, this novel method was used to optimize colorimetric ammonia sensors across a vast design space of as high as 19 variables, achieving two remarkable optimization goals within 1 week: first, a sensing array was developed for ammonia quantification of a wide dynamic range, from 0.5 to 500 ppm; second, a new state-of-the-art detection limit of 50 ppb was reached. This work demonstrates that the H-DBTL approach, combined with a robot, develops a novel paradigm for the on-demand optimization of functional materials. |
---|---|
ISSN: | 2379-3694 2379-3694 |
DOI: | 10.1021/acssensors.3c02043 |