Loading…
Feasibility of PET-enabled dual-energy CT imaging: First physical phantom and initial patient results
X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimo...
Saved in:
Published in: | ArXiv.org 2024-11 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan. A gamma-ray CT (gCT) image at 511 keV can be generated from the existing time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and is then combined with the low-energy x-ray CT image to form dual-energy spectral imaging. To improve the image quality of gCT, a kernel MLAA method was further proposed by incorporating x-ray CT as a priori information. The concept of this PET-enabled DECT has been validated using simulation studies, but not yet with 3D real data. In this work, we developed a general open-source implementation for gCT reconstruction from PET data and use this implementation for the first real data validation with both a physical phantom study and a human subject study on a uEXPLORER total-body PET/CT system. These results have demonstrated the feasibility of this method for spectral imaging and material decomposition.X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan. A gamma-ray CT (gCT) image at 511 keV can be generated from the existing time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and is then combined with the low-energy x-ray CT image to form dual-energy spectral imaging. To improve the image quality of gCT, a kernel MLAA method was further proposed by incorporating x-ray CT as a priori information. The concept of this PET-enabled DECT has been validated using si |
---|---|
ISSN: | 2331-8422 2331-8422 |