Loading…
Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations
Stationary systems modelled by elliptic partial differential equations—linear as well as nonlinear—with stochastic coefficients (random fields) are considered. The mathematical setting as a variational problem, existence theorems, and possible discretisations—in particular with respect to the stocha...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2005-04, Vol.194 (12-16), p.1295-1331 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stationary systems modelled by elliptic partial differential equations—linear as well as nonlinear—with stochastic coefficients (random fields) are considered. The mathematical setting as a variational problem, existence theorems, and possible discretisations—in particular with respect to the stochastic part—are given and investigated with regard to stability. Different and increasingly sophisticated computational approaches involving both Wiener’s polynomial chaos as well as the Karhunen–Loève expansion are addressed in conjunction with stochastic Galerkin procedures, and stability within the Galerkin framework is established.
New and effective algorithms to compute the mean and covariance of the solution are proposed. The similarities and differences with better known Monte Carlo methods are exhibited, as well as alternatives to integration in high-dimensional spaces. Hints are given regarding the numerical implementation and parallelisation. Numerical examples serve as illustration. |
---|---|
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/j.cma.2004.05.027 |