Loading…

Electrocatalytic properties of monometallic and bimetallic nanoparticles-incorporated polypyrrole films for electro-oxidation of methanol

Oxidative electrochemical polymerization of pyrrole at indium-doped tin oxide (ITO) is accomplished from a neat monomer solution with a supporting electrolyte (0.3 M n-tetrabutyl ammonium tetrafluoroborate) by multiple-scan cyclic voltammetry. Polypyrrole (Ppy) films containing nanometer-sized plati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2006-10, Vol.160 (2), p.940-948
Main Authors: Selvaraj, V., Alagar, M., Hamerton, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidative electrochemical polymerization of pyrrole at indium-doped tin oxide (ITO) is accomplished from a neat monomer solution with a supporting electrolyte (0.3 M n-tetrabutyl ammonium tetrafluoroborate) by multiple-scan cyclic voltammetry. Polypyrrole (Ppy) films containing nanometer-sized platinum and Pt/Pd bimetallic particles are electro-synthesized on ITO glass plates by voltammetric cycling between −0.1 and +1 V (versus Ag/AgCl/3 M NaCl). The electrocatalytic oxidation of methanol on the nanoparticle-modified polypyrrole films is studied by means of electrochemical techniques. The modified electrode exhibits significant eletrocatalytic activity for methanol oxidation. The enhanced electrocatalytic activities may be due to the uniform dispersion of nanoparticles in the polypyrrole film and a synergistic effect of the highly-dispersed metal particles so that the polypyrrole film reduces electrode poisoning by adsorbed CO species. The monometallic (Pt) and bimetallic (Pt/Pd) nanoparticles are uniformly dispersed in polypyrrole matrixes, as confirmed by scanning electron microscopic and atomic force microscopic analysis. Energy dispersive X-ray analysis is used to characterize the composition of metal present in the nanoparticle-modified electrodes.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2006.02.055