Loading…

Electrical discharge machining with ultralow discharge energy

The possibility of electrical discharge machining (EDM) with ultralow discharge energy has been investigated. EDM using an RC discharge circuit was performed at low open-circuit voltages and a capacitance of approximately 30 pF. Workpieces were ultrasonically vibrated to remove debris and bubbles fr...

Full description

Saved in:
Bibliographic Details
Published in:Precision engineering 2006-10, Vol.30 (4), p.414-420
Main Authors: Egashira, Kai, Matsugasako, Akihiro, Tsuchiya, Hachiro, Miyazaki, Makoto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The possibility of electrical discharge machining (EDM) with ultralow discharge energy has been investigated. EDM using an RC discharge circuit was performed at low open-circuit voltages and a capacitance of approximately 30 pF. Workpieces were ultrasonically vibrated to remove debris and bubbles from the discharge gap, thus preventing short-circuiting. The machining proceeded at voltages lower than 15 V at a vibration amplitude of 0.4 μm. The maximum discharge energy per pulse is as small as approximately 3 nJ under these conditions. The volumetric electrode wear ratio can be 0.2% at voltages lower than 40 V, while it is normally more than 1% for EDM using an RC discharge circuit. Workpiece surfaces processed at voltages of 20 V or lower are smooth and free of observable discharge craters, and show no typical features of surfaces machined by EDM.
ISSN:0141-6359
1873-2372
DOI:10.1016/j.precisioneng.2006.01.004