Loading…

The effect of incorporating domain knowledge with deep learning in identifying benign and malignant gastric whitish lesions: A retrospective study

Background and Aim Early whitish gastric neoplasms can be easily misdiagnosed; differential diagnosis of gastric whitish lesions remains a challenge. We aim to build a deep learning (DL) model to diagnose whitish gastric neoplasms and explore the effect of adding domain knowledge in model constructi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of gastroenterology and hepatology 2024-07, Vol.39 (7), p.1343-1351
Main Authors: Zeng, Xiaoquan, Yang, Lang, Dong, Zehua, Gong, Dexin, Li, Yanxia, Deng, Yunchao, Du, Hongliu, Li, Xun, Xu, Youming, Luo, Chaijie, Wang, Junxiao, Tao, Xiao, Zhang, Chenxia, Zhu, Yijie, Jiang, Ruiqing, Yao, Liwen, Wu, Lianlian, Jin, Peng, Yu, Honggang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3135-72cd84863f2ae0082033070911457e08a22e039cb28ff2b5918a23b4e1198ae53
container_end_page 1351
container_issue 7
container_start_page 1343
container_title Journal of gastroenterology and hepatology
container_volume 39
creator Zeng, Xiaoquan
Yang, Lang
Dong, Zehua
Gong, Dexin
Li, Yanxia
Deng, Yunchao
Du, Hongliu
Li, Xun
Xu, Youming
Luo, Chaijie
Wang, Junxiao
Tao, Xiao
Zhang, Chenxia
Zhu, Yijie
Jiang, Ruiqing
Yao, Liwen
Wu, Lianlian
Jin, Peng
Yu, Honggang
description Background and Aim Early whitish gastric neoplasms can be easily misdiagnosed; differential diagnosis of gastric whitish lesions remains a challenge. We aim to build a deep learning (DL) model to diagnose whitish gastric neoplasms and explore the effect of adding domain knowledge in model construction. Methods We collected 4558 images from two institutions to train and test models. We first developed two sole DL models (1 and 2) using supervised and semi‐supervised algorithms. Then we selected diagnosis‐related features through literature research and developed feature‐extraction models to determine features including boundary, surface, roundness, depression, and location. Then predictions of the five feature‐extraction models and sole DL model were combined and inputted into seven machine‐learning (ML) based fitting‐diagnosis models. The optimal model was selected as ENDOANGEL‐WD (whitish‐diagnosis) and compared with endoscopists. Results Sole DL 2 had higher sensitivity (83.12% vs 68.67%, Bonferroni adjusted P = 0.024) than sole DL 1. Adding domain knowledge, the decision tree performed best among the seven ML models, achieving higher specificity than DL 1 (84.38% vs 72.27%, Bonferroni adjusted P 
doi_str_mv 10.1111/jgh.16525
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932937720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932937720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3135-72cd84863f2ae0082033070911457e08a22e039cb28ff2b5918a23b4e1198ae53</originalsourceid><addsrcrecordid>eNp1kctu1DAUhi1ERYcpC14AWWJDF2l9nSTsqoq2oErdtGvLSY4TD4kdbKejeQ2eGA9TWCBhWfLt83ds_Qi9p-SC5na57YcLupFMvkIrKgQpaCk2r9GKVFQWNaf1KXob45YQIkgp36BTXgkqOJEr9PNxAAzGQJuwN9i61ofZB52s63HnJ20d_u78boSuB7yzacAdwIxH0MEdmHxuO3DJmv1h2YCzvcPadXjSY55ql3CvYwq2xbvBJhuHfDla7-JnfIUDpODjnMvbZ8AxLd3-DJ0YPUZ49zKu0dPNl8fru-L-4fbr9dV90XLKZVGytqtEteGGaSCkYoRzUpKaUiFLIJVmDAiv24ZVxrBG1jRv8UYApXWlQfI1-nT0zsH_WCAmNdnYwjhqB36JitU897LM4jX6-A-69Utw-XUq16xqlskyU-dHqs1figGMmoOddNgrStQhKJWDUr-DyuyHF-PSTND9Jf8kk4HLI7CzI-z_b1Lfbu-Oyl-H5Z2p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078923297</pqid></control><display><type>article</type><title>The effect of incorporating domain knowledge with deep learning in identifying benign and malignant gastric whitish lesions: A retrospective study</title><source>Wiley</source><creator>Zeng, Xiaoquan ; Yang, Lang ; Dong, Zehua ; Gong, Dexin ; Li, Yanxia ; Deng, Yunchao ; Du, Hongliu ; Li, Xun ; Xu, Youming ; Luo, Chaijie ; Wang, Junxiao ; Tao, Xiao ; Zhang, Chenxia ; Zhu, Yijie ; Jiang, Ruiqing ; Yao, Liwen ; Wu, Lianlian ; Jin, Peng ; Yu, Honggang</creator><creatorcontrib>Zeng, Xiaoquan ; Yang, Lang ; Dong, Zehua ; Gong, Dexin ; Li, Yanxia ; Deng, Yunchao ; Du, Hongliu ; Li, Xun ; Xu, Youming ; Luo, Chaijie ; Wang, Junxiao ; Tao, Xiao ; Zhang, Chenxia ; Zhu, Yijie ; Jiang, Ruiqing ; Yao, Liwen ; Wu, Lianlian ; Jin, Peng ; Yu, Honggang</creatorcontrib><description>Background and Aim Early whitish gastric neoplasms can be easily misdiagnosed; differential diagnosis of gastric whitish lesions remains a challenge. We aim to build a deep learning (DL) model to diagnose whitish gastric neoplasms and explore the effect of adding domain knowledge in model construction. Methods We collected 4558 images from two institutions to train and test models. We first developed two sole DL models (1 and 2) using supervised and semi‐supervised algorithms. Then we selected diagnosis‐related features through literature research and developed feature‐extraction models to determine features including boundary, surface, roundness, depression, and location. Then predictions of the five feature‐extraction models and sole DL model were combined and inputted into seven machine‐learning (ML) based fitting‐diagnosis models. The optimal model was selected as ENDOANGEL‐WD (whitish‐diagnosis) and compared with endoscopists. Results Sole DL 2 had higher sensitivity (83.12% vs 68.67%, Bonferroni adjusted P = 0.024) than sole DL 1. Adding domain knowledge, the decision tree performed best among the seven ML models, achieving higher specificity than DL 1 (84.38% vs 72.27%, Bonferroni adjusted P &lt; 0.05) and higher accuracy than DL 2 (80.47%, Bonferroni adjusted P &lt; 0.001) and was selected as ENDOANGEL‐WD. ENDOANGEL‐WD showed better accuracy compared with 10 endoscopists (75.70%, P &lt; 0.001). Conclusions We developed a novel system ENDOANGEL‐WD combining domain knowledge and traditional DL to detect gastric whitish neoplasms. Adding domain knowledge improved the performance of traditional DL, which provided a novel solution for establishing diagnostic models for other rare diseases potentially.</description><identifier>ISSN: 0815-9319</identifier><identifier>ISSN: 1440-1746</identifier><identifier>EISSN: 1440-1746</identifier><identifier>DOI: 10.1111/jgh.16525</identifier><identifier>PMID: 38414305</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Deep learning ; Differential diagnosis ; domain knowledge ; feature extraction ; Tumors ; whitish gastric lesions</subject><ispartof>Journal of gastroenterology and hepatology, 2024-07, Vol.39 (7), p.1343-1351</ispartof><rights>2024 Journal of Gastroenterology and Hepatology Foundation and John Wiley &amp; Sons Australia, Ltd.</rights><rights>2024 Journal of Gastroenterology and Hepatology Foundation and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3135-72cd84863f2ae0082033070911457e08a22e039cb28ff2b5918a23b4e1198ae53</cites><orcidid>0000-0002-1882-7060 ; 0000-0002-5234-7394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38414305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Xiaoquan</creatorcontrib><creatorcontrib>Yang, Lang</creatorcontrib><creatorcontrib>Dong, Zehua</creatorcontrib><creatorcontrib>Gong, Dexin</creatorcontrib><creatorcontrib>Li, Yanxia</creatorcontrib><creatorcontrib>Deng, Yunchao</creatorcontrib><creatorcontrib>Du, Hongliu</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Xu, Youming</creatorcontrib><creatorcontrib>Luo, Chaijie</creatorcontrib><creatorcontrib>Wang, Junxiao</creatorcontrib><creatorcontrib>Tao, Xiao</creatorcontrib><creatorcontrib>Zhang, Chenxia</creatorcontrib><creatorcontrib>Zhu, Yijie</creatorcontrib><creatorcontrib>Jiang, Ruiqing</creatorcontrib><creatorcontrib>Yao, Liwen</creatorcontrib><creatorcontrib>Wu, Lianlian</creatorcontrib><creatorcontrib>Jin, Peng</creatorcontrib><creatorcontrib>Yu, Honggang</creatorcontrib><title>The effect of incorporating domain knowledge with deep learning in identifying benign and malignant gastric whitish lesions: A retrospective study</title><title>Journal of gastroenterology and hepatology</title><addtitle>J Gastroenterol Hepatol</addtitle><description>Background and Aim Early whitish gastric neoplasms can be easily misdiagnosed; differential diagnosis of gastric whitish lesions remains a challenge. We aim to build a deep learning (DL) model to diagnose whitish gastric neoplasms and explore the effect of adding domain knowledge in model construction. Methods We collected 4558 images from two institutions to train and test models. We first developed two sole DL models (1 and 2) using supervised and semi‐supervised algorithms. Then we selected diagnosis‐related features through literature research and developed feature‐extraction models to determine features including boundary, surface, roundness, depression, and location. Then predictions of the five feature‐extraction models and sole DL model were combined and inputted into seven machine‐learning (ML) based fitting‐diagnosis models. The optimal model was selected as ENDOANGEL‐WD (whitish‐diagnosis) and compared with endoscopists. Results Sole DL 2 had higher sensitivity (83.12% vs 68.67%, Bonferroni adjusted P = 0.024) than sole DL 1. Adding domain knowledge, the decision tree performed best among the seven ML models, achieving higher specificity than DL 1 (84.38% vs 72.27%, Bonferroni adjusted P &lt; 0.05) and higher accuracy than DL 2 (80.47%, Bonferroni adjusted P &lt; 0.001) and was selected as ENDOANGEL‐WD. ENDOANGEL‐WD showed better accuracy compared with 10 endoscopists (75.70%, P &lt; 0.001). Conclusions We developed a novel system ENDOANGEL‐WD combining domain knowledge and traditional DL to detect gastric whitish neoplasms. Adding domain knowledge improved the performance of traditional DL, which provided a novel solution for establishing diagnostic models for other rare diseases potentially.</description><subject>Deep learning</subject><subject>Differential diagnosis</subject><subject>domain knowledge</subject><subject>feature extraction</subject><subject>Tumors</subject><subject>whitish gastric lesions</subject><issn>0815-9319</issn><issn>1440-1746</issn><issn>1440-1746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kctu1DAUhi1ERYcpC14AWWJDF2l9nSTsqoq2oErdtGvLSY4TD4kdbKejeQ2eGA9TWCBhWfLt83ds_Qi9p-SC5na57YcLupFMvkIrKgQpaCk2r9GKVFQWNaf1KXob45YQIkgp36BTXgkqOJEr9PNxAAzGQJuwN9i61ofZB52s63HnJ20d_u78boSuB7yzacAdwIxH0MEdmHxuO3DJmv1h2YCzvcPadXjSY55ql3CvYwq2xbvBJhuHfDla7-JnfIUDpODjnMvbZ8AxLd3-DJ0YPUZ49zKu0dPNl8fru-L-4fbr9dV90XLKZVGytqtEteGGaSCkYoRzUpKaUiFLIJVmDAiv24ZVxrBG1jRv8UYApXWlQfI1-nT0zsH_WCAmNdnYwjhqB36JitU897LM4jX6-A-69Utw-XUq16xqlskyU-dHqs1figGMmoOddNgrStQhKJWDUr-DyuyHF-PSTND9Jf8kk4HLI7CzI-z_b1Lfbu-Oyl-H5Z2p</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Zeng, Xiaoquan</creator><creator>Yang, Lang</creator><creator>Dong, Zehua</creator><creator>Gong, Dexin</creator><creator>Li, Yanxia</creator><creator>Deng, Yunchao</creator><creator>Du, Hongliu</creator><creator>Li, Xun</creator><creator>Xu, Youming</creator><creator>Luo, Chaijie</creator><creator>Wang, Junxiao</creator><creator>Tao, Xiao</creator><creator>Zhang, Chenxia</creator><creator>Zhu, Yijie</creator><creator>Jiang, Ruiqing</creator><creator>Yao, Liwen</creator><creator>Wu, Lianlian</creator><creator>Jin, Peng</creator><creator>Yu, Honggang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1882-7060</orcidid><orcidid>https://orcid.org/0000-0002-5234-7394</orcidid></search><sort><creationdate>202407</creationdate><title>The effect of incorporating domain knowledge with deep learning in identifying benign and malignant gastric whitish lesions: A retrospective study</title><author>Zeng, Xiaoquan ; Yang, Lang ; Dong, Zehua ; Gong, Dexin ; Li, Yanxia ; Deng, Yunchao ; Du, Hongliu ; Li, Xun ; Xu, Youming ; Luo, Chaijie ; Wang, Junxiao ; Tao, Xiao ; Zhang, Chenxia ; Zhu, Yijie ; Jiang, Ruiqing ; Yao, Liwen ; Wu, Lianlian ; Jin, Peng ; Yu, Honggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3135-72cd84863f2ae0082033070911457e08a22e039cb28ff2b5918a23b4e1198ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Differential diagnosis</topic><topic>domain knowledge</topic><topic>feature extraction</topic><topic>Tumors</topic><topic>whitish gastric lesions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Xiaoquan</creatorcontrib><creatorcontrib>Yang, Lang</creatorcontrib><creatorcontrib>Dong, Zehua</creatorcontrib><creatorcontrib>Gong, Dexin</creatorcontrib><creatorcontrib>Li, Yanxia</creatorcontrib><creatorcontrib>Deng, Yunchao</creatorcontrib><creatorcontrib>Du, Hongliu</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Xu, Youming</creatorcontrib><creatorcontrib>Luo, Chaijie</creatorcontrib><creatorcontrib>Wang, Junxiao</creatorcontrib><creatorcontrib>Tao, Xiao</creatorcontrib><creatorcontrib>Zhang, Chenxia</creatorcontrib><creatorcontrib>Zhu, Yijie</creatorcontrib><creatorcontrib>Jiang, Ruiqing</creatorcontrib><creatorcontrib>Yao, Liwen</creatorcontrib><creatorcontrib>Wu, Lianlian</creatorcontrib><creatorcontrib>Jin, Peng</creatorcontrib><creatorcontrib>Yu, Honggang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of gastroenterology and hepatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Xiaoquan</au><au>Yang, Lang</au><au>Dong, Zehua</au><au>Gong, Dexin</au><au>Li, Yanxia</au><au>Deng, Yunchao</au><au>Du, Hongliu</au><au>Li, Xun</au><au>Xu, Youming</au><au>Luo, Chaijie</au><au>Wang, Junxiao</au><au>Tao, Xiao</au><au>Zhang, Chenxia</au><au>Zhu, Yijie</au><au>Jiang, Ruiqing</au><au>Yao, Liwen</au><au>Wu, Lianlian</au><au>Jin, Peng</au><au>Yu, Honggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of incorporating domain knowledge with deep learning in identifying benign and malignant gastric whitish lesions: A retrospective study</atitle><jtitle>Journal of gastroenterology and hepatology</jtitle><addtitle>J Gastroenterol Hepatol</addtitle><date>2024-07</date><risdate>2024</risdate><volume>39</volume><issue>7</issue><spage>1343</spage><epage>1351</epage><pages>1343-1351</pages><issn>0815-9319</issn><issn>1440-1746</issn><eissn>1440-1746</eissn><abstract>Background and Aim Early whitish gastric neoplasms can be easily misdiagnosed; differential diagnosis of gastric whitish lesions remains a challenge. We aim to build a deep learning (DL) model to diagnose whitish gastric neoplasms and explore the effect of adding domain knowledge in model construction. Methods We collected 4558 images from two institutions to train and test models. We first developed two sole DL models (1 and 2) using supervised and semi‐supervised algorithms. Then we selected diagnosis‐related features through literature research and developed feature‐extraction models to determine features including boundary, surface, roundness, depression, and location. Then predictions of the five feature‐extraction models and sole DL model were combined and inputted into seven machine‐learning (ML) based fitting‐diagnosis models. The optimal model was selected as ENDOANGEL‐WD (whitish‐diagnosis) and compared with endoscopists. Results Sole DL 2 had higher sensitivity (83.12% vs 68.67%, Bonferroni adjusted P = 0.024) than sole DL 1. Adding domain knowledge, the decision tree performed best among the seven ML models, achieving higher specificity than DL 1 (84.38% vs 72.27%, Bonferroni adjusted P &lt; 0.05) and higher accuracy than DL 2 (80.47%, Bonferroni adjusted P &lt; 0.001) and was selected as ENDOANGEL‐WD. ENDOANGEL‐WD showed better accuracy compared with 10 endoscopists (75.70%, P &lt; 0.001). Conclusions We developed a novel system ENDOANGEL‐WD combining domain knowledge and traditional DL to detect gastric whitish neoplasms. Adding domain knowledge improved the performance of traditional DL, which provided a novel solution for establishing diagnostic models for other rare diseases potentially.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38414305</pmid><doi>10.1111/jgh.16525</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1882-7060</orcidid><orcidid>https://orcid.org/0000-0002-5234-7394</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0815-9319
ispartof Journal of gastroenterology and hepatology, 2024-07, Vol.39 (7), p.1343-1351
issn 0815-9319
1440-1746
1440-1746
language eng
recordid cdi_proquest_miscellaneous_2932937720
source Wiley
subjects Deep learning
Differential diagnosis
domain knowledge
feature extraction
Tumors
whitish gastric lesions
title The effect of incorporating domain knowledge with deep learning in identifying benign and malignant gastric whitish lesions: A retrospective study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20incorporating%20domain%20knowledge%20with%20deep%20learning%20in%20identifying%20benign%20and%20malignant%20gastric%20whitish%20lesions:%20A%20retrospective%20study&rft.jtitle=Journal%20of%20gastroenterology%20and%20hepatology&rft.au=Zeng,%20Xiaoquan&rft.date=2024-07&rft.volume=39&rft.issue=7&rft.spage=1343&rft.epage=1351&rft.pages=1343-1351&rft.issn=0815-9319&rft.eissn=1440-1746&rft_id=info:doi/10.1111/jgh.16525&rft_dat=%3Cproquest_cross%3E2932937720%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3135-72cd84863f2ae0082033070911457e08a22e039cb28ff2b5918a23b4e1198ae53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078923297&rft_id=info:pmid/38414305&rfr_iscdi=true