Loading…
The effect of incorporating domain knowledge with deep learning in identifying benign and malignant gastric whitish lesions: A retrospective study
Background and Aim Early whitish gastric neoplasms can be easily misdiagnosed; differential diagnosis of gastric whitish lesions remains a challenge. We aim to build a deep learning (DL) model to diagnose whitish gastric neoplasms and explore the effect of adding domain knowledge in model constructi...
Saved in:
Published in: | Journal of gastroenterology and hepatology 2024-07, Vol.39 (7), p.1343-1351 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background and Aim
Early whitish gastric neoplasms can be easily misdiagnosed; differential diagnosis of gastric whitish lesions remains a challenge. We aim to build a deep learning (DL) model to diagnose whitish gastric neoplasms and explore the effect of adding domain knowledge in model construction.
Methods
We collected 4558 images from two institutions to train and test models. We first developed two sole DL models (1 and 2) using supervised and semi‐supervised algorithms. Then we selected diagnosis‐related features through literature research and developed feature‐extraction models to determine features including boundary, surface, roundness, depression, and location. Then predictions of the five feature‐extraction models and sole DL model were combined and inputted into seven machine‐learning (ML) based fitting‐diagnosis models. The optimal model was selected as ENDOANGEL‐WD (whitish‐diagnosis) and compared with endoscopists.
Results
Sole DL 2 had higher sensitivity (83.12% vs 68.67%, Bonferroni adjusted P = 0.024) than sole DL 1. Adding domain knowledge, the decision tree performed best among the seven ML models, achieving higher specificity than DL 1 (84.38% vs 72.27%, Bonferroni adjusted P |
---|---|
ISSN: | 0815-9319 1440-1746 1440-1746 |
DOI: | 10.1111/jgh.16525 |