Loading…
Magnetic ZnFe2O4 nanoferrites studied by X-ray magnetic circular dichroism and Mössbauer spectroscopy
ZnFe2O4 nanoparticles (6nm) were synthesized by hydrothermal methods. Subsequent mechanical treatment applied to the nanocrystalline material caused an increment of the grain size up to 13nm. The samples were characterized by X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism...
Saved in:
Published in: | Physica. B, Condensed matter Condensed matter, 2007-02, Vol.389 (1), p.155-158 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ZnFe2O4 nanoparticles (6nm) were synthesized by hydrothermal methods. Subsequent mechanical treatment applied to the nanocrystalline material caused an increment of the grain size up to 13nm. The samples were characterized by X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) at the Fe-K edge and 57Fe Mossbauer spectroscopy. The absorption pre-edge features indicate that Fe3+ ions occupy non-centrosymmetric sites. XAS data evidence the presence of Fe3+ tetrahedrally coordinated while XMCD spectra reflect the magnetic character of the compound The Mossbauer results show a superparamagnetic behaviour with blocking temperatures at 40 and 250K for 6 and 13nm samples, respectively. The 4.2K Mossbauer spectra reflect that Fe3+ ions occupy both octahedral and tetrahedral spinel sites. All these results provide consistent evidence of the high degree of inversion achieved by these combined methods, which modifies the long-range ordering. We also demonstrated that, starting from a non-equilibrium state, an increment of the inversion activated by the milling occurs in spite of the augment of the grain size. |
---|---|
ISSN: | 0921-4526 1873-2135 |
DOI: | 10.1016/j.physb.2006.07.045 |