Loading…
Long time interaction of envelope solitons and freak wave formations
This paper concerns long time interaction of envelope solitary gravity waves propagating at the surface of a two-dimensional deep fluid in potential flow. Fully nonlinear numerical simulations show how an initially long wave group slowly splits into a number of solitary wave groups. In the example p...
Saved in:
Published in: | European journal of mechanics, B, Fluids B, Fluids, 2006-09, Vol.25 (5), p.536-553 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper concerns long time interaction of envelope solitary gravity waves propagating at the surface of a two-dimensional deep fluid in potential flow. Fully nonlinear numerical simulations show how an initially long wave group slowly splits into a number of solitary wave groups. In the example presented, three large wave events are formed during the evolution. They occur during a time scale that is beyond the time range of validity of simplified equations like the nonlinear Schrödinger (NLS) equation or modifications of this equation. A Fourier analysis shows that these large wave events are caused by significant transfer to side-band modes of the carrier waves. Temporary downshiftings of the dominant wavenumber of the spectrum coincide with the formation large wave events. The wave slope at maximal amplifications is about three times higher than the initial wave slope. The results show how interacting solitary wave groups that emerge from a long wave packet can produce freak wave events.
Our reference numerical simulation are performed with the fully nonlinear model of Clamond and Grue [D. Clamond, J. Grue, A fast method for fully nonlinear water wave computations, J. Fluid Mech. 447 (2001) 337–355]. The results of this model are compared with that of two weakly nonlinear models, the NLS equation and its higher-order extension derived by Trulsen et al. [K. Trulsen, I. Kliakhandler, K.B. Dysthe, M.G. Velarde, On weakly nonlinear modulation of waves on deep water, Phys. Fluids 12 (10) (2000) 2432–2437]. They are also compared with the results obtained with a high-order spectral method (HOSM) based on the formulation of West et al. [B.J. West, K.A. Brueckner, R.S. Janda, A method of studying nonlinear random field of surface gravity waves by direct numerical simulation, J. Geophys. Res. 92 (C11) (1987) 11 803–11 824]. An important issue concerning the representation and the treatment of the vertical velocity in the HOSM formulation is highlighted here for the study of long-time evolutions. |
---|---|
ISSN: | 0997-7546 1873-7390 |
DOI: | 10.1016/j.euromechflu.2006.02.007 |