Loading…
Controlling Product Distribution of Polyethylene Hydrogenolysis Using Bimetallic RuM3 (M = Fe, Co, Ni) Catalysts
Plastic hydrogenolysis is an attractive approach for producing value-added chemicals due to its mild reaction conditions, but controlling product distribution is challenging due to the formation of undesired CH4. This work reports several bimetallic RuM3/CeO2 (M = Fe, Co, Ni) catalysts that shift th...
Saved in:
Published in: | Chem & bio engineering 2024-02, Vol.1 (1), p.67-75 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plastic hydrogenolysis is an attractive approach for producing value-added chemicals due to its mild reaction conditions, but controlling product distribution is challenging due to the formation of undesired CH4. This work reports several bimetallic RuM3/CeO2 (M = Fe, Co, Ni) catalysts that shift the product of low-density polyethylene hydrogenolysis toward longer-chain hydrocarbons. These catalysts were characterized by using X-ray absorption fine structure spectroscopy, electron microscopy imaging, and H2 temperature-programmed reduction. The combined catalytic evaluation and characterization results revealed that the product distribution was regulated by the formation of bimetallic alloys. A model compound, n-hexadecane, was selected to further understand the differences in hydrogenolysis over the Ru-based catalysts. Although a longer reaction time shifted the product toward smaller molecules, the bimetallic (RuCo3/CeO2) catalyst limited the further conversion of C2-C5 into CH4. This work highlights the role of bimetallic alloys in tailoring the interaction with hydrocarbons, thereby controlling the product distribution of polymer hydrogenolysis. |
---|---|
ISSN: | 2836-967X |
DOI: | 10.1021/cbe.3c00007 |