Loading…
Mechanical Behavior of Complex 3D Calcium Phosphate Cement Scaffolds Fabricated by Indirect Solid Freeform Fabrication In Vivo
Calcium phosphate cement is a bioceramic with potential applications for bone-tissue engineering. In this work, controlled porous calcium phosphate scaffolds with interconnected pores were computationally designed by an image-based approach and fabricated by indirect solid freeform fabrication (ISFF...
Saved in:
Published in: | Key engineering materials 2006-01, Vol.309-311, p.957-960 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Calcium phosphate cement is a bioceramic with potential applications for bone-tissue engineering. In this work, controlled porous calcium phosphate scaffolds with interconnected pores were computationally designed by an image-based approach and fabricated by indirect solid freeform fabrication (ISFF) or ‘lost mold’ technique. Voxel finite-element analysis (FEA) showed that
mechanical properties of design and fabricated scaffold can be predicted computationally. Scaffolds were then implanted subcutaneously to demonstrate tissue in-growth. Previously, we showed the ability of porous calcium phosphate cement scaffolds to have sufficiently strong mechanical properties for bone tissue engineering applications. This work shows the image-based FEAs from
micro-CT scans in vivo (four- and eight weeks). Extensive new bone apposition was noted with micro-CT technique after four- and eight weeks. FEA models of the original design and scaffolds with newly bone formed were compared. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.309-311.957 |