Loading…
Influence of minimum element size to determine crack closure stress by the finite element method
Measuring opening or closure stress is a complex process that influences the low accuracy of obtained data. Finite element models have been one of the available ways to deal with this problem. The difficulty of modelling the whole process of crack growth (due to the great number of cycles implied) a...
Saved in:
Published in: | Engineering fracture mechanics 2005-02, Vol.72 (3), p.337-355 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Measuring opening or closure stress is a complex process that influences the low accuracy of obtained data. Finite element models have been one of the available ways to deal with this problem. The difficulty of modelling the whole process of crack growth (due to the great number of cycles implied) as the great complexity of the phenomenon itself (with a high plastic strain concentrated in a small area, with elevated stress gradients) has made the results to be quite varied, being influenced by a great number of modelling parameters. Of those parameters, the minimum size of the element used to mesh the area around the crack tip vicinity presents a great influence on the results.
In this work, a detailed analysis of the influence of this parameter in the results in terms of closure or opening stress is presented. The effect that different meshing criteria can have on the result is complex and it has been necessary to reduce the element size around the crack tip to a size that had not been reached before. Procedures and modelling criteria stricter than the ones shown in the current bibliography are proposed. A methodology for the correct interpretation of the results is also established. |
---|---|
ISSN: | 0013-7944 1873-7315 |
DOI: | 10.1016/j.engfracmech.2004.04.002 |