Loading…

On different flux splittings and flux functions in WENO schemes for balance laws

In this paper we focus our attention on obtaining well-balanced schemes for balance laws by using Marquina’s flux in combination with the finite difference and finite volume WENO schemes. We consider also the Rusanov flux splitting and the HLL approximate Riemann solver. In particular, for the prese...

Full description

Saved in:
Bibliographic Details
Published in:Computers & fluids 2006-12, Vol.35 (10), p.1074-1092
Main Authors: Črnjarić-Žic, N., Vuković, S., Sopta, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we focus our attention on obtaining well-balanced schemes for balance laws by using Marquina’s flux in combination with the finite difference and finite volume WENO schemes. We consider also the Rusanov flux splitting and the HLL approximate Riemann solver. In particular, for the presented numerical schemes we develop corresponding discretizations of the source term, based on the idea of balancing with the flux gradient. When applied to the open-channel flow and to the shallow water equations, we obtain the finite difference WENO scheme with Marquina’s flux splitting, which satisfies the approximate conservation property, and also the balanced finite volume WENO scheme with Marquina’s solver satisfying the exact conservation property. Finally, we also present an improvement of the balanced finite difference WENO scheme with the Rusanov (locally Lax–Friedrichs) flux splitting, we previously developed in [Vuković S, Sopta L. ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations. J Comput Phys 2002;179:593–621].
ISSN:0045-7930
1879-0747
DOI:10.1016/j.compfluid.2005.08.005