Loading…
On different flux splittings and flux functions in WENO schemes for balance laws
In this paper we focus our attention on obtaining well-balanced schemes for balance laws by using Marquina’s flux in combination with the finite difference and finite volume WENO schemes. We consider also the Rusanov flux splitting and the HLL approximate Riemann solver. In particular, for the prese...
Saved in:
Published in: | Computers & fluids 2006-12, Vol.35 (10), p.1074-1092 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we focus our attention on obtaining well-balanced schemes for balance laws by using Marquina’s flux in combination with the finite difference and finite volume WENO schemes. We consider also the Rusanov flux splitting and the HLL approximate Riemann solver. In particular, for the presented numerical schemes we develop corresponding discretizations of the source term, based on the idea of balancing with the flux gradient. When applied to the open-channel flow and to the shallow water equations, we obtain the finite difference WENO scheme with Marquina’s flux splitting, which satisfies the approximate conservation property, and also the balanced finite volume WENO scheme with Marquina’s solver satisfying the exact conservation property. Finally, we also present an improvement of the balanced finite difference WENO scheme with the Rusanov (locally Lax–Friedrichs) flux splitting, we previously developed in [Vuković S, Sopta L. ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations. J Comput Phys 2002;179:593–621]. |
---|---|
ISSN: | 0045-7930 1879-0747 |
DOI: | 10.1016/j.compfluid.2005.08.005 |