Loading…
On Approximate Solutions in Vector Optimization Problems Via Scalarization
This work deals with approximate solutions in vector optimization problems. These solutions frequently appear when an iterative algorithm is used to solve a vector optimization problem. We consider a concept of approximate efficiency introduced by Kutateladze and widely used in the literature to stu...
Saved in:
Published in: | Computational optimization and applications 2006-11, Vol.35 (3), p.305-324 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work deals with approximate solutions in vector optimization problems. These solutions frequently appear when an iterative algorithm is used to solve a vector optimization problem. We consider a concept of approximate efficiency introduced by Kutateladze and widely used in the literature to study this kind of solutions. Necessary and sufficient conditions for Kutateladze's approximate solutions are given through scalarization, in such a way that these points are approximate solutions for a scalar optimization problem. Necessary conditions are obtained by using gauge functionals while monotone functionals are considered to attain sufficient conditions. Two properties are then introduced to describe the idea of parametric representation of the approximate efficient set. Finally, through scalarization, characterizations and parametric representations for the set of approximate solutions in convex and nonconvex vector optimization problems are proved and the obtained results are applied to Pareto problems. |
---|---|
ISSN: | 0926-6003 1573-2894 |
DOI: | 10.1007/s10589-006-8718-0 |