Loading…
Electrochemical technique to develop surface-controlled polyaniline nano-tulips (PANINTs) on PCL-reinforced chitosan functionalized (CS-f-Fe2O3) scaffolds for stimulating osteoporotic bone regeneration
Bone defects pose significant challenges in orthopedic surgery, often leading to suboptimal outcomes and complications. Addressing these challenges, we employed a three-electrode electrochemical system to fabricate surface-controlled polyaniline nano-tulips (PANINTs) decorated polycaprolactone (PCL)...
Saved in:
Published in: | International journal of biological macromolecules 2024-04, Vol.264, p.130608-130608, Article 130608 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bone defects pose significant challenges in orthopedic surgery, often leading to suboptimal outcomes and complications. Addressing these challenges, we employed a three-electrode electrochemical system to fabricate surface-controlled polyaniline nano-tulips (PANINTs) decorated polycaprolactone (PCL) reinforced chitosan functionalized iron oxide nanoparticles (CS-f-Fe2O3) scaffolds. These structures were designed to emulate the natural extracellular matrix (ECM) and promote enhanced osseointegration by establishing a continuous interface between host bone and graft, thereby improving both biological processes and mechanical stability. In vitro experiments demonstrated that PANINTs-PCL/CS-f-Fe2O3 substrates significantly promoted the proliferation, differentiation, and spontaneous outgrowth and extension of MC3T3-E1 cell activity. The nanomaterials exhibited increased cell viability and osteogenic differentiation, as evidenced by elevated expression of bone-related markers such as ALP, ARS, COL-I, RUNX2, and SPP-I, as determined by qRT-PCR. Our findings underscore the regenerative potential of in situ cell culture systems for bone defects, emphasizing the targeted stimulation of essential cell subpopulations to facilitate rapid bone tissue regeneration. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.130608 |